Positive
—
Positivité en géométrie arithmétique, algébrique et analytique
Rencontre Faltings/Nadel
Campus de Jussieu, les 19 et 20 janvier 2012
Des textes
- Tate (1966). Endomorphisms of abelian varieties over finite fields.
Inventiones Math.
- Lang (1997). Survey of Diophantine Geometry, chapitres III et IV.
- Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell (édité par L. Szpiro), Astérisque 125 (1985).
- Deligne. Preuve des conjectures de Tate et de Shafarevitch. Séminaire Bourbaki, 26 (1983-1984), Exposé No. 616.
- Szpiro. La conjecture de Mordell. Séminaire Bourbaki, 26 (1983-1984), Exposé No. 619
- Zarkhin et Parshin Finiteness. Problems in Diophantine geometry
[S. Lang, Fundamentals of Diophantine geometry, Russian translation, Appendix, see pp. 369–438, "Mir'', Moscow, 1986; MR0854670 (88a:11054)]
paru dans
American Mathematical Society Translations. Series 2. Vol. 143.
Eight papers translated from the Russian. Edited by Ben Silver. American Mathematical Society Translations, Series 2, 143.
- Helgason (1978). Differential geometry, Lie groups and symmetric space.
- Nadel (1989). The nonexistence of certain level structures on abelian varieties over complex function fields. Ann. of Math.
- Baily, W. L., Jr.; Borel, A. On the compactification of arithmetically defined quotients of bounded symmetric domains. Bull. Amer. Math. Soc. 70 1964 588–593.
- Baily & Borel (1966). Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math.