Séminaire de Cryptographie

Accueil     Présentation     Archives

Emilia Kasper

Stream Ciphers - Now and Then

In November 2004, the European Network of Excellence for Cryptology (ECRYPT) launched a call for new stream cipher primitives. Authors from academia as well as industry submitted 34 designs, and in May 2008, 8 ciphers were chosen for the eSTREAM final portfolio. In this talk, we look back at the history of stream ciphers to understand the design choices made by cryptographers today. We start by reviewing "historical" designs based on linear feedback shift registers, such as the GSM A5/1 cipher. We explain basic cryptanalytic techniques - such as guess-and-determine attacks and correlation attacks - used to break LFSR-based ciphers. We also stop briefly to examine the importance of state size and key/IV length w.r.t. time-memory trade-offs. We then move on to the beginning of 2000s, which brought us new designs from the NESSIE research project, including SNOW 2.0, later to become the 3G mobile standard SNOW 3G. We discuss how new cryptanalytic tools, most notably algebraic cryptanalysis, reshaped design principles in modern ciphers, and review some of the eSTREAM submissions.

In the second part of this talk, we focus on the cryptanalysis of one of the eSTREAM finalists, Moustique. We give a step-by-step overview of our attack that allows to recover the full 96-bit key in 2^{38} steps, using related keys, and allows to speed up exhaustive search in the standard case (without related keys) by a factor 28. Here, we invite the audience to interact, identify weaknesses that lead to the break and propose tweaks to thwart the attack.

Cryptanalysis of Moustique is joint work with Vincent Rijmen, Tor E. Bjorstad, Christian Rechberger, Matt Robshaw and Gautham Sekar.