Cryptography Seminar

Home     Presentation     Previous years

Heinrich Matzat

Galois Groups of Additive Polynomials

Additive polynomials over a field $ F$ of characteristic $ p>0$ have the form $ f(X)=\sum\limits^m_{k=0} a_k X^{p^k}$ with $ a_k \in F$. In case $ a_0 \neq 0$ they are Galois polynomials with an $ \mathbb{F}_p$-vector space of solutions, and any finite Galois extension $ E$ over $ F$ can be generated by such an additive polynomial.

The Galois group of $ f(X)$ or $ E/F$ , respectively, acts linearly on the solution space and thus is a subgroup of the linear group $ \operatorname{GL}_m(\mathbb{F}_p)$. It can be computed via subgroup descent from $ \operatorname{GL}_m(\mathbb{F}_p)$ in analogy to the Stauduhar method.

On the other hand, any additive polynomial can be obtained as a characteristic polynomial of a Frobenius module over $ F$, i.e., an $ F$-vector space $ M$ with a $ \phi$-semilinear Frobenius operator $ \Phi$, where $ \phi$ denotes the Frobenius endomorphism of $ F$. The smallest connected linear algebraic group in which the representing matrix of $ \Phi$ is contained gives an upper bound for the Galois group.

Since lower bounds can be obtained by specialization of the matrix in analogy to the classical Dedekind criterion, this technique gives a useful tool for the construction of Galois extensions with given (connected) Galois group (in positive characteristic). This will be demonstrated by examples, among others the Dickson groups $ G_2(q)$.


Goss, D.: Basic structures of function field arithmetic. Springer-Verlag 1996, Chapter I.

Malle, G.: Explicit realization of the Dickson groups $ G_2(q)$ as Galois groups. Preprint, Kassel 2002.

Matzat, B. H.: Frobenius modules and Galois groups. Preprint, Heidelberg 2002.