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The Context-Tree Weighting 
Method: Basic Properties 

Frans M. J. Willems, Member, IEEE, Yuri M. Shtarkov, and Tjalling J. Tjalkens, Member, IEEE 

Abstract-We describe a sequential universal data compression 
procedure for binary tree sources that performs the “double 
mixture.” Using a context tree, this method weights in an ef- 
ficient recursive way the coding distributions corresponding to 
all bounded memory tree sources, and achieves a desirable 
coding distribution for tree sources with an unknown model and 
unknown parameters. Computational and storage complexity of 
the proposed procedure are both linear in the source sequence 
length. We derive a natural upper bound on the cumulative 
redundancy of our method for individual sequences. The three 
terms in this bound can be identified as coding, parameter, and 
model redundancy. The bound holds for all source sequence 
lengths, not only for asymptotically large lengths. The analysis 
that leads to this bound is based on standard techniques and turns 
out to be extremely simple. Our upper bound on the redundancy 
shows that the proposed context-tree weighting procedure is 
optimal in the sense that it achieves the Rissanen (1984) lower 
bound. 

Index Terms- Sequential data compression, universal source 
coding, tree sources, modeling procedure, context tree, arithmetic 
coding, cumulative redundancy bounds. 

I. INTRODUCTION-CONCEPTS 

nite memory tree source has the property that the next- Aj symbol ’ probabilities depend on a finite number of most 
recent symbols. This number in general depends on the ac- 
tual values of these most recent symbols. Binary sequential 
universal source coding procedures for finite memory tree 
sources often make use of a context tree which contains for 
each string (context) the number of zeros and the number of 
ones that have followed this context, in the source sequence 
seen so far. The standard approach (see e.g., Rissanen and 
Langdon [12], Rissanen [8], [ 101, and Weinberger, Lempel, 
and Ziv [19]) is that, given the past source symbols, one 
uses this context tree to estimate the actual “state” of the 
finite memory tree source. Subsequently, this state is used to 
estimate the distribution that generates the next source symbol. 
This estimated distribution can be used in arithmetic coding 
procedures (see, e.g., Rissanen and Langdon [ 121) to encode 
(and decode) the next source symbol efficiently, i.e., with 
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low complexity and with negligible additional redundancy. 
After Rissanen’s pioneering work in [SI, Weinberger, Lempel, 
and Ziv [19] developed a procedure that achieves optimal 
exponential decay of the error probability in estimating the 
current state of the tree source. These authors were also 
able to demonstrate that their coding procedure achieves 
asymptotically the lower bound on the average redundancy, 
as stated by Rissanen ([9, Theorem 11, or [ lo,  Theorem 11). 
Recently, Weinberger, Rissanen, and Feder [2 11 could prove 
the optimality, in the sense of achieving Rissanen’s lower 
bound on the redundancy, of an algorithm similar to that of 
Rissanen in [SI. 

An unpleasant fact about the standard approach is that one 
has to specify parameters (N and [j in Rissanen’s procedure 
[SI or K for the Weinberger, Lempel, and Ziv [ 191 method), 
that do not affect the asymptotic performance of the procedure, 
but may have a big influence on the behavior for finite (and 
realistic) source sequence lengths. These artificial parameters 
are necessary to regulate the state estimation characteristics. 
This gave the authors the idea that the state estimation concept 
may not be as natural as one believes. A better starting 
principle would be, just to find a good coding distribution. 
This more or less trivial guideline immediately suggests the 
application of model weighting techniques. An advantage of 
weighting procedures is that they perform well not only on 
the average but for each individual sequence. Model weighting 
(twice-universal coding) is not new. It was first suggested by 
Ryabko 1131 for the class of finite-order Markov sources (see 
also [14] for a similar approach to prediction). The known 
literature on model weighting resulted, however, in probability 
assignments that require complicated sequential updating pro- 
cedures. Instead of finding implementable coding methods one 
concentrated on achieving low redundancies. In what follows 
we will describe a probability assignment for bounded memory 
tree sources that allows efficient updating. This procedure, 
which is based on tree-recursive model-weighting, results in 
a coding method that is very easy to analyze, and that has 
a desirable performance, both in realized redundancy and in 
complexity. 

11. BINARY BOUNDED MEMORY TREE SOURCES 

A. Strings 

A string s is a concatenation of binary symbols, hence 
.$ = q l - l q 2 - l  . . . yo  with q - ,  E (0. l}, for i = 0.1 , . . . .  1 - 1. 
Note that we index the symbols in the string from right to left, 
starting with 0 and going negative. For the length of a string s 
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we write I ( s ) .  A semi-infinite string s = . . . (1-140 has length 
1 ( s )  = x. The empty string X has length 1 ( X )  = 0. 

If we have two strings 

and 

then 

is the concatenation of both. If V is a set of strings and 
y E (0. l}, then 

81 = 0.1 

810 = 0.3 9 
000 = 0.5 

Fig. I .  Model (suffix set) and parameters. 

x 

Dejinitiotz 1: The actual next-symbol probabilities for a 
bounded memory tree source with suffix set S and parameter 
vector 0 s  are 

P,(X, = llx;:+.@s) = 1 - P,(X, = 01.r;:;.s. O s )  

1 V x y = {uy : v E V }  

We say that a string s = ql-lq2-/  . . . q o  is a S U ~ X  of the 
string S I  = q i - l , y i - l ,  . . . yh .  if 1 5 1' and Q - ~  = y', for 
i = 0 . 1  - 1. The empty string X is a suffix of all strings. 

B. Binan, Bounded Memory Tree Source Dejinition 

A binary tree source generates a sequence xTm of digits 
assuming values in the alphabet (0; l}. We denote by x k  the 
sequence x,,,:cr,,+l . . . :rr , ,  and allow m, and n to be infinitely 
large. For 11 < r n  the sequence :E: is empty, denoted by 4. 

The statistical behavior of a binary jinite memory tree source 
can be described by means of a sufJir set S .  This suffix set is 
a collection of binary strings s ( k ) ,  with k = 1.2,  . . . , ISI. We 
require it  to be proper and complete. Properness of the suffix 
set implies that no string in S is a s u f i  of any other string in 
S.  Completeness guarantees that each semi-infinite sequence 
(string) . . . J ; ~ - ~ x , , - ~ . E ~ ~  has a suffix that belongs to S .  This 
suffix is unique since S is proper. 

Let D E ( 0 .  l . . . . }  be fixed throughout this paper. A 
hounded memo? tree source has a suffix set S that satisfies 
l ( s )  5 D for all s E S .  We say that the source has memory 
not larger than D. 

The properness and completeness of the suffix set make it 
possible to define the suf/ix.function ps( .). This function maps 
semi-infinite sequences onto their unique suffix s in S .  Since 
all suffixes in S have length not larger than D ,  only the last D 
symbols of a semi-infinite sequence determine its suffix in S.  
To each suffix s in S there corresponds a parameter Os. Each 
parameter (i.e., the probability of a source symbol being 1) 
assumes a value in [O: 11 and specifies a probability distribution 
over { 0. l}. Together, all parameters form the parameter vector 

8 s  = 1 { H ,  : s E S } .  

If the tree source has emitted the semi-infinite sequence ~5-k 
up to now, the suffix function tells us that the parameter for 
generating the next binary digit xt of the source is H,, where 
s = / js( .r:I;) .  Thus 

The actual block probabilities are now products of actual 
next-symbol probabilities, i.e. 

t 

pa ( X :  = lxy- D .  S .  0 s )  = n p ( ~  ( X r  = L ~ T  Ix:Ih ; S ,  e,). 
r=l 

All tree sources with the same suffix set are said to have 
the same model. Model and suffix set are equivalent. The set 
of all tree models having memory not larger than D is called 
the model class Co. It is possible to specify a model in this 
model class by a natural code by encoding the suffix set S 
recursively. The code of S is the code of the empty string A. 
The code of a string s is void if l ( s )  = D; otherwise, it is 0 if 
s E S and 1 followed by the codes of the strings O s  and 1 s  if 
s 6 S .  If we use this natural code, the number of bits that are 
needed to specify a model S E CD is equal to I 'D(S), where 

De$nition 2: I 'D(S) ,  the cost of a model S with respect to 
model class CD is defined as 

r D ( s )  -1 IS1 - 1 + I{. : s E S.l(S) # D}l (2) 

where it  is assumed that S E CD. 
Example 1: Let D = 3. Consider a source with suffix 

set S = (00. 10. l} and parameters 000 = 0.5, 010 = 0.3, 
and 01 = 0.1 (see Fig. I ) .  The (conditional) probability of 
the source generating the sequence 01 10100 given the past 
symbols . . ,010 can be calculated as follows: 

~ , ( 0 1 1 0 1 0 0 ~  " '010) = (1 - Hlo)Ho"&( l  - &)H1o(l - 01) 
(1 - HI[)) = 0.0059535. (3) 

Since D = 3, the model (suffix set) S can be specified by 

code (S) = code ( A )  = 1 code (0) code (1) 
= 1 1 code (00) code (10) 0 = 1 1 0 0 0. 

(4) 
Tree sources are related to FSMX sources that were first 

described by Rissanen [ IO] .  FSMX sources can be considered 
as tree sources whose suffix set S is closed. A suffix set 
is said to be closed if the generator of each suffix s E S 
belongs to S or is a suffix of an s E S .  The generator 
of a suffix s = q - l  . . . q p l q o  is ql-l . . .q -1 .  Note that 
S = {00.010.110. l} is a tree model, but not an FSMX model. 
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Each finite memory tree source with suffix set S has a finite- 
state machine implementation. The number of states is then 
IS1 or more. Only for tree sources with a closed suffix set S 
(i.e., for FSMX sources) the number of states is equal to ISI. 

111. CODES AND REDUNDANCY 

Let T E (1; a , . . . } .  Instead of the source sequence XT 
= :c152. . . ZT itself, the encoder sends a codeword cL = 
c1c2 . . . C L  consisting of (0; 1)-components to the decoder. 
The decoder must be able to reconstruct the source sequence 
ZT from this codeword. 

We assume that both the encoder and the decoder have 
access to the past source symbols d P D  = z l - ~ . .  ' x - ~ x ~ ,  
so that implicitely the suffix that determines the probability 
distribution of the first source symbols, is available to them. A 
codeword that is formed by the encoder therefore depends not 
only on the source sequence XT but also on d P D .  To denote 
this functional relationship we write ~"(xTIxY- , ) .  The length 
of the codeword, in binary digits, is denoted as L ( x T ~ x ? - ~ ) .  

We restrict ourselves to prefuc codes here (see [ 3 ,  ch. 
51). These codes are not only uniquely decodable but also 
instantaneous or selj-punctuating which implies that you can 
immediately recognize a codeword when you see it. The set of 
codewords that can be produced for a fixed :cYPD form a prefix 
code, i.e., no codeword is the prefix of any other codeword 
in this set. All sequences ~ 1 ~ 2 . .  . cl, for some l = 1 , 2 . .  . . L 
are a prefix of c1c2 . . . C L .  

determine the individ- 
ual redundancies. 

A A 

The codeword lengths L(zT 

Definition 3: The individual redundancy 

of a sequence XT given the past symbols xYPD, with respect 
to a source with model S E CD and parameter vector O S ,  is 
defined as' 

where L ( : ~ T ~ x Y - ~ )  is the length of the codeword that corre- 
sponds to xT given Z Y - ~ .  We consider only sequences XT 
with positive probability P , ( ~ ~ l . d - ~ .  S .  O S ) .  

The value 

can be regarded as the information contained in xT given the 
past xypD. It is often called the ideal codeword length. Note 
that we do not divide the redundancies by the source sequence 
length T ,  we consider only cumulative redundancies. Note also 
that our redundancies can be negative. 

The objective in universal source coding is to design meth- 
ods that achieve small individual redundancies with respect 
to all sources in a given class. Since it is also very important 
that these methods have low (storage and computational) com- 
plexity, it would be more appropriate to say that the emphasis 

' The basis of the log ( . )  is assumed to be 2, throughout this paper. 

in source coding is on finding a desirable tradeoff between 
achieving small redundancies and keeping the complexity low. 

IV. ARITHMETIC CODING 

An arithmetic encoder computes the codeword that cor- 
responds to the actual source sequence. The corresponding 
decoder reconstructs the actual source sequence from this 
codeword again by computation. Using arithmetic codes it 
is possible to process source sequences with a large length 
T .  This is often needed to reduce the redundancy per source 
symbol. 

Arithmetic codes are based on the Elias algorithm (unpub- 
lished, but described by Abramson [ l ]  and Jelinek [4]) or on 
enumeration (e.g., Schalkwijk [ 151 and Cover [2]). Arithmetic 
coding became feasable only after Rissanen [7] and Pasco [6] 
had solved the accuracy issues that were involved. We will 
not discuss such issues here. Instead, we will assume that all 
computations are carried out with infinite precision. 

Suppose that the encoder and decoder both have access to, 
what is called the coding distribution 

Pr(n.:). ,r! E (0. l}t. t = 0. 1.. . . . T.  

We require that this distibution satisfies 

Pr(4)  = 1. 
Pc(.CP') = Pr(,"l-'. xt = 0) + P, ( J - 1 .  xt = 1). 

for all .rP' E (0. l}t-l. t = 1,. . . . T 
and 

Pc(.rT) > 0, for all possible .I-: E ( 0 .  l}' (6) 

where possible sequences are sequences that can actually 
occur, i.e., sequences J$ with P,(-L:) > 0. Note that 4 stands 
for the empty sequence (L:). 

In Appendix I we describe the Eliaa algorithm. It results in 
the following theorem. 

Theorem I :  Given a coding distribution 

Pc(.r",. E (0. l}'. t = 0.1:'. . T 

the Elias algorithm achieves codeword lengths L(xT)  that 
satisfy 

1 
L(& < log ~ + 2  Pr(.z;:) (7) 

for all possible .r: E (0. l}'. The codewords form a prefix 
code. 

The difference between the codeword length L(xT)  and 
log (l/P,(xT)) is always less than 2 bits. We say that the 
individual coding redundancy is less than 2 bits. 

We conclude this section with the observation that the Elias 
algorithm combines an acceptable coding redundancy with a 
desirable sequential implementation. The number of operations 
is linear in the source sequence length T .  It is crucial, 
however, that the encoder and decoder have access to the 
probabilities Pc(.c:-l.Xt = 0) and Pc(.c-'.Xt = 1) after 
having processed x1s2 . . . . c ~ - ~ .  If this is the case we say that 
the coding distribution is sequentially available. 



656 IEEE TRANSACTIONS ON INFORMATION THEORY. VOL 41. NO. 3 ,  MAY I Y Y S  

It should be noted that our view of an arithmetic code 
is slightly different from the usual. We assume that block 
probabilities are fed into the encoder and decoder and not 
conditional probabilities as usual. The reason for this is that 
it creates a better match between our modeling algorithm and 
the arithmetic code, and avoids multiplications. 

If we are ready to accept a loss of at most 2 bits coding 
redundancy, we are now left with the problem of finding good, 
sequentially available, coding distributions. 

V. PROBABILITY ESTIMATION 

The probability that a memoryless source with parameter B 
generates a sequence with a zeros and b ones is (1 - 6 ' )"Bb.  
If we weight this probability over all 6' with a (i! i)-Dirichlet 
distribution we obtain the so-called Krichevsky-Trofimov es- 
timate (see [ 5 ] ) .  

Dejinition 4: The Krichevski-Trofimov (KT) estimated 
probability for a sequence containing a 2 0 zeros and b 2 0 
ones is defined as 

Pc(n.b) = (1 - 6')"Ob do. (8) 

This estimator has properties that are listed in the lemma 
that follows. The lemma is proved in Appendix 11. 

Lemma 1 :  The KT-probability estimator P, ( a ,  b )  
1) can be computed sequentially, i.e., Pe(O,O) = 1, and for 
a 2 0 and b 2 0 

a + ;  
Pe(a + 1. b )  = ~ . Pe(a. b )  a + b + l  

and 

P,(a. b + 1) = ~ b f  . P,(a.b) (9) a + b + l  

2 )  satisfies, for U + b 2 1, the following inequality: 

The sequential behavior of the KT-estimator was studied 
by Shtarkov [ 171. Another estimator, the Laplace estimator, 
was investigated by Rissanen [lo], [ 111. This estimator can be 
obtained by weighting (1 - B)"B6 with B uniform over [0,1]. 

For the KT-estimator the parameter redundancy can be 
uniformly bounded, using the lower bound (see Lemma 1) 
on P,(a. b ) ,  i.e. 

for all c1. + b 2 1 and all 6' E [O!  11. It is impossible to prove 
such a uniform bound for the Laplace estimator. 

VI. CODING FOR AN UNKNOWN TREE SOURCE 

A.  Dejinition of the Context-Tree Weighting Method 

Consider the case where we have to compress a sequence 
which is (supposed to be) generated by a tree source, whose 
suffix set S E CD and parameter vector 0 s  are unknown 

> 
> 
> 

c;Li,i 
5/64 

( a , b )  = (4 ,3)  
P, = 512048 

P, = 95132768 

iji 
Fig. 2. Weighted context tree 7 3  for 1 1 :  = 0 1 1  U 1 U U  
x : - D  = " '  010. 

and 

to the encoder and the decoder. We will define a weighted 
coding distribution for this situation, study its performance, 
and discuss its implementation. The coding distribution is 
based on the concept of a context tree (see Fig. 2 ) .  

Dejnition 5: The context tree 70 is a set of nodes labeled 
s, where s is a (binary) string with length l ( s )  such that 
0 5 l ( s )  5 D .  Each node s E 70 with l ( s )  < D, "splits 
up" into two nodes, Os and Is. The node s is called the parent 
of the nodes 0s and I s ,  who in turn are the children of s. To 
each node s E 70, there correspond counts a,< 2 0 and b, 2 0. 
For the children 0s and 1s of parent node s ,  the counts must 
satisfy a o S  + ul ,  = U, and bo, + b l ,  = b,. 

Now, to each node there corresponds a weighted probability. 
This weighted probability is defined recursively on the context 
tree 70. Without any doubt, this is the basic definition in this 
paper. 

Dejinition 6: To each node s E 70. we assign a weighted 
probability P i  which is defined as 

The context tree together with the weighted probabilities of 
the nodes is called a weighted context tree. 

This definition shows a weighting of both the estimated 
probability in a node and the product of the weighted proba- 
bilities that correspond to its children. The next lemma gives 
another way of looking at the weighting that is performed in 
(12). It explains that a weighted probability of a node can 
be regarded as a weighting over the estimated probabilities 
corresponding to all (sub-) models that live above this node. 
The cost (see (2)) of a (sub-) model determines its weighting 
factor. The proof of this lemma can be found in Appendix 111. 
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Lemma 2: The weighted probability P:, of a node s E 7 D  B. An Upper Bound on the Redundancy 
with l ( s )  = d for 0 5 d 5 D satisfies First we give a definition. 

2 - r D - d ( u )  = 1. 
U E C o - d  

The summation is over all complete and proper suffix sets U .  
To be able to define a weighted coding distribution, we 

assume that the counts (as .  b s ) ,  s E 70 are determined by the 
source sequence zi seen up to now, assuming that xYpD are 
the past symbols. 

Dejnition 7: For each s E 70 let U ~ ( . E ~ ~ Z ! - ~ ) ,  respec- 
tively b , ( z i / ~ : - ~ ) ,  be the number of times that :I-, = 0, 
respectively 2, = 1, in ~4 for 1 5 7 5 t such that x:I:(,, = s .  

The weighted probabilities corresponding to the nodes s E 70 
are now denoted by P;)(x:I.cypD). For any sequence .E:-~ of 
past symbols, we define our weighted coding distribution as 

(14) 
A Pc(r4 Iz:-o) = P;(zilI;Y-D) 

for all xi E (0. t = 0. 1.. . . . T, where X is the root node 
of the context tree 70. 

This coding distribution determines the context-tree weight- 
ing method. Note that the counts indeed satisfy the restrictions 
mentioned in Definition 6.1. To verify that it satisfies (6) we 
formulate a lemma. The proof of this lemma can be found in 
Appendix IV. 

Lemma 3: Let t = 1.2.  . .  . . T .  If s E 70 is not a suffix 
of .E:I~, then 

hence y(.) is a convex-n continuation of logz + 1 for 
0 5 z < 1 satisfying $0) = 0. 

The basic result concerning the context-tree weighting tech- 
nique can be stated now. 

Theorem 2: The individual redundancies with respect to 
any source with model S E CD and parameter vector 8 s  
are upper-bounded by 

T 
I-)(l.TI.r:-~.s.@s) < rD(s) + ]SI?(-) + 2 (18) 

IS1 

for all .rT E (0. l}T, for any sequence of past symbols . I - Y - ~ ,  
if we use the weighted coding distribution specified in (14). 

Note that (18) can be rewritten as (see (19) at the bottom 
of this page). The redundancy bound in Theorem 2 holds 
with respect to all sources with model S E C D  and parameter 
vector O s ,  and not only the actual source. Using the definition 
of redundancy (see ( 5 ) )  we therefore immediately obtain an 
upper bound on the codeword lengths. 

Corollaty I :  Using the coding distribution in (14), the 
codeword lengths L(.rTlzy-D) are upper-bounded by 

and, if s is a suffix of x:i;b, then S E C O ,  and a parameter vector 0 s .  Let 

since X is a suffux of all strings x:Ib. From this we may 
conclude that our weighted coding distribution satisfies (6) 
after having verified that weighted probabilities are always 
positive. 

We are now ready to investigate the redundancy of the 
context tree weighting method. 
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For the last term, the coding redundancy, we obtain, using 
Theorem 1, that 

We treat the parameter redundancy, the middle term, as 
follows: 

Pa(2TIIC.:-D.S. O S )  (1 - I9,)W~~ 
n P e ( ( ~ , .  6,) S E S  Pe(%. b,) 

= log 1% 
SES 

The product 

SES 

makes it  possible to split up the parameter redundancy in IS1 
terms representing the parameter redundancies corresponding 
to each of the IS1 suffixes in S .  The term corresponding to 
suffix s E S can be upper-bounded by log (U, + b,) + 1 as 
we have seen before in ( 1  1); however, only for a,+b, > 0. For 
a, + b, = 0 such a term does not contribute to the redundancy. 
This is why we have introduced the function y. Its fl-convexity 
makes it possible to apply Jensen's inequality (see Cover and 
Thomas, [3, p. 251). 

What remains to be investigated is the first term in (21), the 
model redundancy term. It follows from Lemma 2 that 

P i  = 
2 T r D ( l A )  Pe,(us.  b,) 2 2 - r D ( s )  J-J P,(us .  b s ) .  

l A t C D  BEU S E S  
(24) 

Using (14) we obtain the following upper bound for the model 
redundancy: 

Combining (22), (23), and (25) in (21) yields the theorem. 
Theorem 2 is the basic result in this paper. In this theorem 

we recognize beside the coding and parameter redundancy the 
model redundancy. Model redundancy is a consequence of not 
knowing the (actual, or best in the sense of minimizing (20)) 
model S,  and therefore not being able to take distribution 
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as coding distribution. This results in a loss, the model 
redundancy, which is upper-bounded by r D ( S )  bits. Note that 
in Section I1 we have described a natural code that would need 
rD(S)  bits to specify the model S .  Therefore, our weighted 
method is at least as good as a two-pass method, in which first 
the best model is determined and transmitted, followed by the 
code for the sequence given that model. 

Example 2: Suppose a source generated the sequence = 
0110100 with sequence of past symbols . I ; : - ~  = . . .010. 

For D = 3 we have plotted the weighted context tree 
70 in Fig. 2. Node s contains the counts (a,9. b,), the 
Krichevsky-Trofimov estimate P, (a,. b s ) ,  and the weighted 
probability P:,. The coding probability corresponding to this 
sequence is '35132768. 

The upper bound for the model redundancy with respect to 
the model S = (00.10. l} of the source from Example 1 is 
r D ( S )  = 5 bits. This also follows quite easily from 

( ; P p ( f I l . h ) ) .  

C. Implementation of the Context-Tree Weighting Method 

Before discussing implementation issues we refer to Ap- 
pendix I for notation concerning arithmetic encoding and 
decoding. 

I )  Encoding: First we set 

Then, for t = 1. '2. . . . . Y', we create nodes 

for d = 0.1. . . . . D (if necessary), we do a dummy 0-update 
on these nodes to find 

and we then do the actual update of the nodes s ( d )  for 
d = 0.1. '  . . . D for X t  = .rt. This results in 
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2 )  Decoding: First we set 

B(qq.&,) := 0 

and determine F,  from 

C l C 2 .  ' .  CL(ey)CL(2y)+lr ' ' .  . 

Then, for t = 1.2,  . . . , T ,  we create nodes 

s ( d )  := xi:; 

for d = 0,1,  . . . , D (if necessary), we do a dummy 0-update 
on these nodes to find 

Pc(z"ll.  xt = Olz:pD) 

we compare F, with 

B(z;-llz:-D) + P,(z;-l.xt = 01z:-,) 

B(zi-1. X t  = zt1d-,) 

to find :ct, update B(zi-'lz:-,) to 

and we then do the actual update of the nodes s ( d )  for 
d = 0 , 1 , .  . . , D for X t  = xt .  This yields 

P c ( x y ,  xt = .t). 

After having processed ~ 1 . ~ 2  . . . z~ we compute L ( z r )  from 
Pc(zy )  so that we know the start of the next codeword. 

3)  Comments: We assume that a node s E I, contains 
the pair (U,, b s ) ,  the estimated probability P, (a,, b,), and the 
weighted probability P i .  When a node is created, the counts 
a, and b, are made 0, the probabilities P, (a,, b,) and P i  are 
made 1. 

Doing a dummy 0-update of the nodes s ( d )  for d = 
0 , l . .  . . . D means that we assume that X t  = 0. Then, for 
d = D ,  D - 1, . . . , 0, we update as indicated by (9) in Lemma 
1 

(27) 

where the tilde above a variable indicates that this variable is 
a temporary one. After that we form 

pS,(w .- - .- P&,(D) + 1. b , ( D ) )  

and for d = D - 1, D - 2. . . .  ,0, we compute 

P:(d) := -P,(a,(d) 1 -  + 1, b s ( d ) )  + -p~t--d--IS(d)PCt--d--IS(d) 1 -  
1L' 2 2 

(28) 
where we note that 

so P;("') was changed, and P ~ i - " - l s ( d )  has remained the 
same (see Lemma 3). All this eventually results in 

Pc(."l-'. xt = O / d p , ) .  

It will be clear from (39) that (see (29) at the bottom of 
this page). It should be noted that we use block probabilities 
to feed into the arithmetic encoder and decoder instead of 
conditional probabilities as usual. This avoids multiplications 
in the arithmetic encoder and decoder, which is a pleasant side 
effect of the weighted approach. 

If X t  = 0, the actual update is identical to (27) and ( 2 0  
the only difference is that now we update Pe(as: b,) and Pl, 
and increment a ,  instead of computing the temporary values 
P,(a,. b,) and P i .  If X t  = 1, the actual update requires 
incrementing of b,, etc. Note that we only have to update the 
nodes s ( d )  for d = 0.1. . . . . D ,  the nodes along the path in 
the context tree that is determined by the past symbols .:I;. 

The codeword C " ( L ? )  is finally computed as in definition 
(36) in Appendix I and transmitted to the decoder. 

The decoder forms F,  as in (35) in Appendix I. Note that 
F, is compared to the threshold 

D ( x i p ' )  = B ( x ~ - ~ / : c : ~ ~ )  + P,(:rt-l3Xt = O~:C:-,) 

see (42), Appendix I. Finally, the length L ( z r )  is computed 
as in Definition 11. 

4 )  Complexity Issues: For each symbol xt we have to visit 
D+l  nodes. Some of these nodes have to be created first. From 
this it  follows that the total number of allocated nodes cannot 
be more than T ( D  + 1).  This makes the storage complexitl), 
not more than linear in T .  Note also that the number of nodes 
cannot be more than 2D+1 - 1, the total number of nodes in 
ID. This shows exponential behavior in D. We did not take 
into account here, that for infinite precision arithmetic, the 
number of digits that are needed to specify the counts a, and 
b, and the probabilities P,(a,. b,) and P i ,  is growing with 
increasing t ,  making the storage space for one node measured 
in, e.g., bytes getting bigger each time. 

The computational complexity, i.e. the number of additions, 
multiplications, and divisions, is proportional to the number 
of nodes that are visited, which is T ( D  + 1). Therefore, this 
complexity is also linear in T .  Again we have neglected the 
fact here, that for infinite precision arithmetic the number 
of digits that are needed to specify the counts U, and b, 
and the probabilities P,(us,bs) and P i ,  is growing rapidly, 
making additions, multiplications, and divisions becoming 
more complex with increasing t .  

VII. OTHER WEICHTINGS 

The coding distribution defined by (12) (and (14)) yields 
model cost not more than 21SI - 1, i.e., linear in ISI, if we 
assume that S has no leaves at depth D. This is achieved 
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by giving equal weight to P,(a,. 15,) and PZP? in each 
(internal) node s E 7 D .  

It is quite possible, however, to assume that these weights 
are not equal, and even to suppose that they are different 
for different nodes s. In this section we will assume that the 
weigthing in a node s depends on the depth l ( s )  of this node 
in the context tree 70. Hence 

P,“, = nqSIP,(a,. b,) + (1 - ~ y l ( ~ ) ) P z P $ ,  with LYD = 1. 
(30) 

Now note that each model can be regarded as the empty 
(memoryless) model { A }  to which a number of nodes may 
have been added. The cost of the empty model is -logcro, 
we can also say that the model cost of the first parameter is 
-log U ( )  bits. Our objective is now that, if we add a new node 
(parameter) to a model, the model cost increases by 6 bit, no 
matter at what level d we add this node. In other words 

A 

for 0 5 d 5 D - 1, or consequently 

(;) = 2 - 6 ( & ) 2 + l  

If we now assume that 6 = 0, which implies that all models 
that fit into S E C D  have equal cost, we find that 

(OD-l)-’ = 2, ( a D - * ) - l  = 5. ( a D _ 3 ) - l  = 26. 
( a D - 4 ) - ’  = 677 

etc. This yields a cost of log677 = 9.403 bits for all 677 
models in 7 4  and 150.448 bits for D = 8, etc. Note that the 
number of models in C D  grows very fast with D. Incrementing 
D by one results roughly in squaring the number of models 
in C D .  The context-tree weighting method is working on all 
these models simultaneously in a very efficient way! 

If we take 6 such that -1oga0 = 6, we obtain model cost 
61S1, which is proportional to the number of parameters IS\. 
For D = 1 we find that 

= 0.694 bit 
& - 1  6 = -log ~ 

2 
for D = 2 we get 6 = 1.047 bits, 6 = 1.411 bits for D = 4, 
and for D = 8 we find h = 1.704 bits, etc. 

VIII. FINAL REMARKS 

We have seen in Lemma 2 that P,(Z~~X~-,) as given by 
(14) is a weighting over all distributions 

J-J Pe(as. b,) 
SE.5 

corresponding to models S E Co. From (8) we may conclude 
that n Pe(a3. b,) 

SE.5 

is a weighting of 

where all components of 0.5 are assumed to be ($ .  $ ) -  
Dirichlet distributed. Therefore, we may say that P,-(.L:~.&,) 
is a weighting over all models S E C D  and all parameter 
vectors O s ,  also called a “double mixture” (see [20]). We 
should stress that the context-tree weighting method induces a 
certain weighting over all models (see Lemma 2), which can 
be changed as, e.g., in Section VI1 in order to achieve specific 
model redundancy behavior. 

The redundancy upper bound in Theorem 2 shows that our 
method achieves the lower bound obtained by Rissanen (see, 
e.g. [9, Theorem 11) for finite-state sources. However, our 
redundancy bound is in fact stronger, since it holds for all 
source sequences 3;: given . ~ ‘ i ) - ~  and all T ,  and not only 
averaged over all source sequences : I . ;  given xYpD only for 
T large enough. Our bound is also stronger in the sense that 
it is more precise about the terms that tell us about the model 
redundancy. 

The context-tree weighting procedure was presented first 
at the 1993 IEEE International Symposium on Information 
Theory in San Antonio, TX (see 1221). At the same time 
Weinberger, Rissanen, and Feder [ 2  I ]  studied finite-memory 
tree sources and proposed a method that is based on state 
estimation. Again an (artificial) constant C and a function 
g ( t )  were needed to regulate the selection process. Although 
we claim that the context-tree method has eliminated all these 
artificial parameters we must admit that the basic context-tree 
method, which is described here, has D as a parameter to be 
specified in advance, making the method work only for models 
S E CD, i.e., for models with memory not larger than D. It 
is however possible (see [25]) to modify the algorithm such 
that there is no constraint on the maximum memory depth D 
involved. (Moreover, it was demonstrated there that it is not 
necessary to have access to , c : ) - ~ . )  This implementation thus 
realizes injinite context-tree depth D .  The storage complexity 
still remains linear in T .  It was furthermore shown in [25] 
that this implementation of the context-tree weighting method 
achieves entropy for any stationary and ergodic source. 

In a recent paper, Weinberger, Merhav, and Feder [20] 
consider the model class containing finite-state sources (and 
not only bounded memory tree sources). They strengthened 
the Shtarkov pointwise-minimax lower bound on the individ- 
ual redundancy ([17, Theorem l]), i.e., they found a lower 
bound (equivalent to Rissanen’s lower bound for average 
redundancy [9]) that holds for most sequences in most types. 
Moreover, they investigated the weighted (“mixing”) approach 
for finite-state sources. Weinberger el al. showed that the 
redundancy for the weighted method achieves their strong 
lower bound. Furthermore, their paper shows by an example 
that the state-estimation approach, the authors call this the 
“plug-in” approach, does not work for all source sequences, 
i.e., does not achieve the lower bound. 

Finite accuracy implementations of the context-tree weight- 
ing method in combination with arithmetic coding are studied 
in [24]. In [23] context weighting methods are described that 
perform on more general model classes than the one that we 
have studied here. These model classes are still bounded mem- 
ory, and the proposed schemes for them are constructive just 
like the context-tree weighting method that is described here. 
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Although we have considered only binary sources here, 
there exist straightforward generalizations of the context-tree 
weighting method to nonbinary sources (see e.g. [IS]). 

Definition 11: The codeword rL(.rF) for source sequence 
xT consists of 

L(.cT) 2 [ log ( l /P r ( J f ) ) l  + 1 

APPENDIX I 
ELIAS ALGORITHM 

binary digits such that 

The first idea behind the Elias algorithm is that to each F(cL( . rT) )  2 (B(..:) . 2L(x:)1 . 2-L( z :  j (36) 
source sequence XT there corresponds a Jubinterval of [O. 1). 
This principle can be traced back to Shannon [ 161. where [U ]  is the smallest integer 2 U. We consider only 

sequences xy with Pc(.cF) > 0. Dejinition 9: The interval I ( J ~ )  corresponding to 
Since 

E { 0 . 1 j t . t = 0 . 1  :... T 

is defined as 

where 
1 El(.;) = P&;) 

5; <s;  

for some ordering over (0. l j t .  
Note that for k = 0 we have that Pc(q5) = 1 and B(q5) = 0 

(the only sequence of length 0 is q5 itself), and consequently, 
I ( 4 )  = [0, 1). Observe that for any fixed value of t ;  t = 
0 , l . .  . . T ,  all intervals I ( & ; )  are disjoint, and their union 
is [0, 1). Each interval has a length equal to the corresponding 
coding probability. 

Just like all source sequences, a codeword cL = c1c2 . . . C L  

can be associated with a subinterval of [O. 1). 
Definition 10: The interval J ( c L )  corresponding to the 

codeword cL is defined as 

J ( c L )  6 [ F ( c L ) .  F ( c L )  + 2 - L )  (34) 

with 

F ( c L )  2 ~ 2 ~ ' .  
l=l .L 

To understand this, note that cL can be considered as 
a binary fraction F ( c L ) .  Since cL is followed by other 
codewords, the decoder receives a stream of code digits from 
which only the first L digits correspond to cL. The decoder can 
determine the value that is represented by the binary fraction 
formed by the total stream q c 2  . . . cLcL+l  . . 1, i.e. 

F, 2 s 2 - l  ( 3 5 )  
l = l . x  

where it should be noted that the length of the total stream is 
not necessarily infinite. Since 

we may say that the interval J ( c L )  corresponds to the code- 
word cL. 

To compress a sequence : cy ,  we search for a (short) code- 
word ."(.?) whose code interval J ( c L )  is contained in the 
sequence interval I ( xT) .  

(38) 

we may conclude that 

J ( c L ( : r T ) )  c I(.:) 
and, therefore, F, E I(.:). Since all intervals I ( :rT)  are 
disjoint, the decoder can reconstruct the source sequence :rT 
from F,. Note that after this reconstruction, the decoder can 
compute c"(xT) ,  just like the encoder, and find the location 
of the first digit of the next codeword. Note also that, since all 
code intervals are disjoint, no codeword is the prefix of any 
other codeword. This implies also that the code satisfies the 
prefix condition. From the definition of the length L(x?) we 
immediately obtain Theorem 1 .  

The second idea behind the Elias algorithm, is to order the 
sequences of length t lexicographically, for 1;: t = 1. . . . . T .  
For two sequences J;: and 2; we have that xi < 2; if and 
only if there exists a 7 E { 1 . 2 . .  . . . t }  such that z i  = for 
i = 1.2.  . . . .7 - 1 and 2, < iT. This lexicographical ordering 
makes it  possible to compute the interval I(:rT) sequentially. 
To do so, we transform the starting interval I ( 4 )  = [O, 1) 
into I ( . r l ) .  I ( z ~ : I ; ~ ) ,  . . ., and I(x1x2..  . : c ~ ) ,  respectively. The 
consequence of the lexicographical ordering over the source 
sequences is that 

B ( z i )  = rr(?;) = re(.",') 
5; <r; ,.;-I I 

+ Pr(z;-l.i . ,) 
? , < X i  

= B(:1$1) + Pc.(..(.."l-l. &). (39) 
.Et <st 

In other words B(:ri) can be computed from B(zi- ')  and 
Pc(:c;-'. X t  = 0). Therefore the encoder and the decoder 
can easily find I ( z i )  after having determined I(x;-'), if i t  
is "easy" to determine probabilities PC(x;-l.Xt = 0) and 
Pc(z ; - l . x  - - 1) after having processed 51x2 . . f 1 ~ t - 1 .  

Observe that when the symbol .xt is being processed, the 
source interval 

I ( X - 1 )  = [B(:ri-'). B(.ri-') + Pc(zc",-l)) 
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is subdivided into two subintervals We obtain (9) from 

The encoder proceeds with one of these subintervals depending 
on the symbol .rt, therefore I ( z - i )  C I ( .L- ' ) .  This implies that 

(41) I ( . l f )  C q. r f -1)  c ' ' ' 5 I ( $ ) .  

The decoder determines from F, the source symbols 
~ 1 .  .c2. . . . , .rT, respectively, by comparing F, to thresholds 
D(T"1'). 

Definition 12: The threqholds D(.r;-l) are defined as 

for f = 1 . 2  :... 2'. 
Observe that threshold D(.r;-') splits up the interval 

I ($ ' )  in two parts (see (40)). It is the upper boundary 
point of I(.L;-'. X t  = 0) but also the lower boundary point 
of I ( ,r;- l .Xt  = 1). Since always F, E I ( T ; )  5 I(.ci), we 
have for D(.C-- ' )  that 

F,  < B(.ci) + Pc(.ci) = B(.r-') + Pc(.c:-'. X t  = 0) 
= ~( . r - - ' ) .  if .rt = o (43) 

and 

2) Define 

(47) 

First we assume that a 2 1.  Consider 

A((L + 1. b )  uU(u + l / 2 )  - - 
A(u. b )  (U + 1)"+' 

To analyze (48) we define, for f E [l.  x), the functions 

The derivatives of these functions are 

and 

Take 

1 / 2  
t + 1 / 2  

(1 = ~ Therefore, the decoder can easily find ,rt by comparing F, 
to the threshold D(.r-- ' ) ;  in other words, it can operate 
sequentially. 

Since the code satisfies the prefix condition, it should not 
be necessary to have access to the complete F, for decoding 

and observe that 0 < (1 5 1/3. Then from 

t 1 - (Y (13 2 
= In __ = - 2 ( 0  + + + . . .) 5 -2tr ln 

I.:. Indeed, it  can be shown that only the first L(.cT) digits t + l  l + t r  . 3 d  

of the codestream are actually needed. (5  1) 
1 -~ - - 

t + 1 / 2  

APPENDIX I1 
PROPERTIES OF THE KT-ESTIMATOR 

Proofi The proof consists of two parts. 
1) The fact that Pp(O. 0) = 1 follows from 

we obtain that 

Therefore 
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we may conclude that We have used the induction hypothesis in the second step of 
the derivation. Conclusion is that the hypothesis also holds for 
d - 1, and by induction for all 0 5 d 5 D. The fact 

clgo 
d t  

This results in 2-rn-d(24 = 

a + + )a+b+1/2 > linl ( a + + l)o+b+l/Z = e.  U E C D - d  
- 

(54) can be proved similarly if we note that (a+h a+b+cc f L + b  

Next we investigate the case where a = 0. Note that this 
implies that b 2 1, and consider 

If we again use the fact that 

(WlO APPENDIX Iv 
UPDATING PROPERTIES 

Proof First note that if s is not a suffix of x::; no 
descendant of s can be a suffix of xf-;. Therefore, for s 
and its descendants the a- and b-counts remain the same, and 
consequently also the estimated probabilities P, (a,. b,) ,  after 
having observed the symbol x t .  This implies that also the 
weighted probability P i  does not change and (15) holds. 

For those s E 70 that are a suffix of x::; we will show that 
the hypothesis (16) holds by induction. Observe that (16) holds 
for l ( s )  = D. To see this note that for s such that Z(s) = D 

dt 
we find that 

A(1,b)  2 ; . A(0.b) .  (57) 

Inequality (55) together with (57),  now implies that 

A(a + 1. b )  2 A(a. b ) ,  for a 2 0. (58) 
Therefore 

A(a. b)  2 A ( 0 , l )  = A(1:O). (59) 
The lemma now follows from the observation 

A(1,O) = A(0: 1) = l / 2 .  P;'.(0) + P;(l) = Pe(as + 1. b,) + P,(a,. b, + 1) 

= Pe(as. b.5) = P:>(4). (62) It can also easily be proved that A(u.b)  5 m. Both 
bounds are tight. Here we use the following notation : 

APPENDIX I11 
WEIGHTING PROPERTIES 

P;,(o) = P(;(.E;-l. xt = olz:-D) 

Proof We prove by induction that the hypothesis in 
Lemma 2 holds. For d = D this is true. Next assume that 

P;,(I)  = Pt;,(,x-'. xt = ~ l z y - ~ )  

the hypothesis also holds for 0 < d 5 D. Now consider a 
node s with l ( s )  = d - 1, then 

Next assume that (16) holds for l ( s )  = d,O < d 5 D. Now 
consider nodes corresponding to strings s with l ( s )  = d - 1. 
Then 1 s  is a postfix of xi::, and 0s not, or vice versa. Let 
1s be a postfix of :ri:b, then 

71 E v 

1 1 
P, (0) + P i  ( 1) = P, ( a ,  + 1. b, ) + r:: (0) . P; (0) 

1 1 + f&,. b,  + 1) + .PP( 2 

+ -PZ" 2 ( 4 ) .  P i  "(0) + - 2 P;S($). Pis( 1) 

1) .r;y 1) 
1 1 

= - 2 P,(a, + 1. b,) + 5 Pr(as.  b,  + 1) 
1 1 
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The induction hypothesis is used to obtain the fourth equality. 
The second equality follows from (15). The proof is analogous 
when O s  is a postfix of X E ~ L  instead of Is. 
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