
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 3, MAY 1995 653

The Context-Tree Weighting
Method: Basic Properties

Frans M. J. Willems, Member, IEEE, Yuri M. Shtarkov, and Tjalling J. Tjalkens, Member, IEEE

Abstract-We describe a sequential universal data compression
procedure for binary tree sources that performs the “double
mixture.” Using a context tree, this method weights in an ef-
ficient recursive way the coding distributions corresponding to
all bounded memory tree sources, and achieves a desirable
coding distribution for tree sources with an unknown model and
unknown parameters. Computational and storage complexity of
the proposed procedure are both linear in the source sequence
length. We derive a natural upper bound on the cumulative
redundancy of our method for individual sequences. The three
terms in this bound can be identified as coding, parameter, and
model redundancy. The bound holds for all source sequence
lengths, not only for asymptotically large lengths. The analysis
that leads to this bound is based on standard techniques and turns
out to be extremely simple. Our upper bound on the redundancy
shows that the proposed context-tree weighting procedure is
optimal in the sense that it achieves the Rissanen (1984) lower
bound.

Index Terms- Sequential data compression, universal source
coding, tree sources, modeling procedure, context tree, arithmetic
coding, cumulative redundancy bounds.

I. INTRODUCTION-CONCEPTS

nite memory tree source has the property that the next- Aj symbol ’ probabilities depend on a finite number of most
recent symbols. This number in general depends on the ac-
tual values of these most recent symbols. Binary sequential
universal source coding procedures for finite memory tree
sources often make use of a context tree which contains for
each string (context) the number of zeros and the number of
ones that have followed this context, in the source sequence
seen so far. The standard approach (see e.g., Rissanen and
Langdon [12], Rissanen [8], [101, and Weinberger, Lempel,
and Ziv [19]) is that, given the past source symbols, one
uses this context tree to estimate the actual “state” of the
finite memory tree source. Subsequently, this state is used to
estimate the distribution that generates the next source symbol.
This estimated distribution can be used in arithmetic coding
procedures (see, e.g., Rissanen and Langdon [121) to encode
(and decode) the next source symbol efficiently, i.e., with

Manuscript received August 20, 1993; revised September 1994. The mate-
rial in this paper was presented in part at the IEEE lnternationl Symposium
on Information Theory, San Antonio, TX, January 17-22, 1993.

F. M. J . Willems and T. J . Tjalkens are with the Eindhoven University of
Technology, Electrical Engineering Department, 5600 MB Eindhoven, The
Netherlands.

Y. M. Shtarkov was with the Eindhoven University of Technology, Elec-
trical Engineering Department, 5600 MB Eindhoven, The Netherlands, on
leave from the Institute for Problems of Information Transmission, 101447,
Moscow, GSP-4, Russia.

IEEE Log Number 9410408.

low complexity and with negligible additional redundancy.
After Rissanen’s pioneering work in [SI, Weinberger, Lempel,
and Ziv [19] developed a procedure that achieves optimal
exponential decay of the error probability in estimating the
current state of the tree source. These authors were also
able to demonstrate that their coding procedure achieves
asymptotically the lower bound on the average redundancy,
as stated by Rissanen ([9, Theorem 11, or [lo, Theorem 11).
Recently, Weinberger, Rissanen, and Feder [2 11 could prove
the optimality, in the sense of achieving Rissanen’s lower
bound on the redundancy, of an algorithm similar to that of
Rissanen in [SI.

An unpleasant fact about the standard approach is that one
has to specify parameters (N and [j in Rissanen’s procedure
[SI or K for the Weinberger, Lempel, and Ziv [191 method),
that do not affect the asymptotic performance of the procedure,
but may have a big influence on the behavior for finite (and
realistic) source sequence lengths. These artificial parameters
are necessary to regulate the state estimation characteristics.
This gave the authors the idea that the state estimation concept
may not be as natural as one believes. A better starting
principle would be, just to find a good coding distribution.
This more or less trivial guideline immediately suggests the
application of model weighting techniques. An advantage of
weighting procedures is that they perform well not only on
the average but for each individual sequence. Model weighting
(twice-universal coding) is not new. It was first suggested by
Ryabko 1131 for the class of finite-order Markov sources (see
also [14] for a similar approach to prediction). The known
literature on model weighting resulted, however, in probability
assignments that require complicated sequential updating pro-
cedures. Instead of finding implementable coding methods one
concentrated on achieving low redundancies. In what follows
we will describe a probability assignment for bounded memory
tree sources that allows efficient updating. This procedure,
which is based on tree-recursive model-weighting, results in
a coding method that is very easy to analyze, and that has
a desirable performance, both in realized redundancy and in
complexity.

11. BINARY BOUNDED MEMORY TREE SOURCES

A. Strings

A string s is a concatenation of binary symbols, hence
.$ = q l - l q 2 - l . . . yo with q - , E (0. l}, for i = 0.1 , 1 - 1.
Note that we index the symbols in the string from right to left,
starting with 0 and going negative. For the length of a string s

0018-9448/95$04.00 0 1995 IEEE

654 IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. JI. NO. 3. MAY 1Y95

we write I (s) . A semi-infinite string s = . . . (1-140 has length
1 (s) = x. The empty string X has length 1 (X) = 0.

If we have two strings

and

then

is the concatenation of both. If V is a set of strings and
y E (0. l}, then

81 = 0.1

810 = 0.3 9
000 = 0.5

Fig. I . Model (suffix set) and parameters.

x

Dejinitiotz 1: The actual next-symbol probabilities for a
bounded memory tree source with suffix set S and parameter
vector 0 s are

P,(X, = llx;:+.@s) = 1 - P,(X, = 01.r;:;.s. O s)

1 V x y = {uy : v E V }

We say that a string s = ql-lq2-/ . . . q o is a S U ~ X of the
string S I = q i - l , y i - l , . . . yh . if 1 5 1' and Q - ~ = y', for
i = 0 . 1 - 1. The empty string X is a suffix of all strings.

B. Binan, Bounded Memory Tree Source Dejinition

A binary tree source generates a sequence xTm of digits
assuming values in the alphabet (0; l}. We denote by x k the
sequence x,,,:cr,,+l . . . :rr , , and allow m, and n to be infinitely
large. For 11 < r n the sequence :E: is empty, denoted by 4.

The statistical behavior of a binary jinite memory tree source
can be described by means of a sufJir set S . This suffix set is
a collection of binary strings s (k) , with k = 1.2, . . . , ISI. We
require it to be proper and complete. Properness of the suffix
set implies that no string in S is a s u f i of any other string in
S. Completeness guarantees that each semi-infinite sequence
(string) . . . J ; ~ - ~ x , , - ~ . E ~ ~ has a suffix that belongs to S . This
suffix is unique since S is proper.

Let D E (0 . l } be fixed throughout this paper. A
hounded memo? tree source has a suffix set S that satisfies
l (s) 5 D for all s E S . We say that the source has memory
not larger than D.

The properness and completeness of the suffix set make it
possible to define the suf/ix.function ps(.). This function maps
semi-infinite sequences onto their unique suffix s in S . Since
all suffixes in S have length not larger than D , only the last D
symbols of a semi-infinite sequence determine its suffix in S.
To each suffix s in S there corresponds a parameter Os. Each
parameter (i.e., the probability of a source symbol being 1)
assumes a value in [O: 11 and specifies a probability distribution
over { 0. l}. Together, all parameters form the parameter vector

8 s = 1 { H , : s E S } .

If the tree source has emitted the semi-infinite sequence ~5-k
up to now, the suffix function tells us that the parameter for
generating the next binary digit xt of the source is H,, where
s = / js(.r:I;) . Thus

The actual block probabilities are now products of actual
next-symbol probabilities, i.e.

t

pa (X : = lxy- D . S . 0 s) = n p (~ (X r = L ~ T Ix:Ih ; S , e,).
r=l

All tree sources with the same suffix set are said to have
the same model. Model and suffix set are equivalent. The set
of all tree models having memory not larger than D is called
the model class Co. It is possible to specify a model in this
model class by a natural code by encoding the suffix set S
recursively. The code of S is the code of the empty string A.
The code of a string s is void if l (s) = D; otherwise, it is 0 if
s E S and 1 followed by the codes of the strings O s and 1 s if
s 6 S . If we use this natural code, the number of bits that are
needed to specify a model S E CD is equal to I 'D(S), where

De$nition 2: I 'D(S) , the cost of a model S with respect to
model class CD is defined as

r D (s) -1 IS1 - 1 + I{. : s E S.l(S) # D}l (2)

where it is assumed that S E CD.
Example 1: Let D = 3. Consider a source with suffix

set S = (00. 10. l} and parameters 000 = 0.5, 010 = 0.3,
and 01 = 0.1 (see Fig. I) . The (conditional) probability of
the source generating the sequence 01 10100 given the past
symbols . . ,010 can be calculated as follows:

~ , (0 1 1 0 1 0 0 ~ " '010) = (1 - Hlo)Ho"&(l - &)H1o(l - 01)
(1 - HI[)) = 0.0059535. (3)

Since D = 3, the model (suffix set) S can be specified by

code (S) = code (A) = 1 code (0) code (1)
= 1 1 code (00) code (10) 0 = 1 1 0 0 0.

(4)
Tree sources are related to FSMX sources that were first

described by Rissanen [IO] . FSMX sources can be considered
as tree sources whose suffix set S is closed. A suffix set
is said to be closed if the generator of each suffix s E S
belongs to S or is a suffix of an s E S . The generator
of a suffix s = q - l . . . q p l q o is ql-l . . .q -1 . Note that
S = {00.010.110. l} is a tree model, but not an FSMX model.

WILLEMS et al.: THE CONTEXT-TREE WEIGHTING METHOD 655

Each finite memory tree source with suffix set S has a finite-
state machine implementation. The number of states is then
IS1 or more. Only for tree sources with a closed suffix set S
(i.e., for FSMX sources) the number of states is equal to ISI.

111. CODES AND REDUNDANCY

Let T E (1; a , . . . } . Instead of the source sequence XT
= :c152. . . ZT itself, the encoder sends a codeword cL =
c1c2 . . . C L consisting of (0; 1)-components to the decoder.
The decoder must be able to reconstruct the source sequence
ZT from this codeword.

We assume that both the encoder and the decoder have
access to the past source symbols d P D = z l - ~ . . ' x - ~ x ~ ,
so that implicitely the suffix that determines the probability
distribution of the first source symbols, is available to them. A
codeword that is formed by the encoder therefore depends not
only on the source sequence XT but also on d P D . To denote
this functional relationship we write ~"(xTIxY- ,) . The length
of the codeword, in binary digits, is denoted as L (x T ~ x ? - ~) .

We restrict ourselves to prefuc codes here (see [3 , ch.
51). These codes are not only uniquely decodable but also
instantaneous or selj-punctuating which implies that you can
immediately recognize a codeword when you see it. The set of
codewords that can be produced for a fixed :cYPD form a prefix
code, i.e., no codeword is the prefix of any other codeword
in this set. All sequences ~ 1 ~ 2 . . . cl, for some l = 1 , 2 L
are a prefix of c1c2 . . . C L .

determine the individ-
ual redundancies.

A A

The codeword lengths L(zT

Definition 3: The individual redundancy

of a sequence XT given the past symbols xYPD, with respect
to a source with model S E CD and parameter vector O S , is
defined as'

where L (: ~ T ~ x Y - ~) is the length of the codeword that corre-
sponds to xT given Z Y - ~ . We consider only sequences XT
with positive probability P , (~ ~ l . d - ~ . S . O S) .

The value

can be regarded as the information contained in xT given the
past xypD. It is often called the ideal codeword length. Note
that we do not divide the redundancies by the source sequence
length T , we consider only cumulative redundancies. Note also
that our redundancies can be negative.

The objective in universal source coding is to design meth-
ods that achieve small individual redundancies with respect
to all sources in a given class. Since it is also very important
that these methods have low (storage and computational) com-
plexity, it would be more appropriate to say that the emphasis

' The basis of the log (.) is assumed to be 2, throughout this paper.

in source coding is on finding a desirable tradeoff between
achieving small redundancies and keeping the complexity low.

IV. ARITHMETIC CODING

An arithmetic encoder computes the codeword that cor-
responds to the actual source sequence. The corresponding
decoder reconstructs the actual source sequence from this
codeword again by computation. Using arithmetic codes it
is possible to process source sequences with a large length
T . This is often needed to reduce the redundancy per source
symbol.

Arithmetic codes are based on the Elias algorithm (unpub-
lished, but described by Abramson [l] and Jelinek [4]) or on
enumeration (e.g., Schalkwijk [151 and Cover [2]). Arithmetic
coding became feasable only after Rissanen [7] and Pasco [6]
had solved the accuracy issues that were involved. We will
not discuss such issues here. Instead, we will assume that all
computations are carried out with infinite precision.

Suppose that the encoder and decoder both have access to,
what is called the coding distribution

Pr(n.:). ,r! E (0. l}t. t = 0. 1.. . . . T.

We require that this distibution satisfies

Pr(4) = 1.
Pc(.CP') = Pr(,"l-'. xt = 0) + P, (J - 1 . xt = 1).

for all .rP' E (0. l}t-l. t = 1,. . . . T
and

Pc(.rT) > 0, for all possible .I-: E (0 . l}' (6)

where possible sequences are sequences that can actually
occur, i.e., sequences J$ with P,(-L:) > 0. Note that 4 stands
for the empty sequence (L:).

In Appendix I we describe the Eliaa algorithm. It results in
the following theorem.

Theorem I : Given a coding distribution

Pc(.r",. E (0. l}'. t = 0.1:'. . T

the Elias algorithm achieves codeword lengths L(xT) that
satisfy

1
L(& < log ~ + 2 Pr(.z;:) (7)

for all possible .r: E (0. l}'. The codewords form a prefix
code.

The difference between the codeword length L(xT) and
log (l/P,(xT)) is always less than 2 bits. We say that the
individual coding redundancy is less than 2 bits.

We conclude this section with the observation that the Elias
algorithm combines an acceptable coding redundancy with a
desirable sequential implementation. The number of operations
is linear in the source sequence length T . It is crucial,
however, that the encoder and decoder have access to the
probabilities Pc(.c:-l.Xt = 0) and Pc(.c-'.Xt = 1) after
having processed x1s2 c ~ - ~ . If this is the case we say that
the coding distribution is sequentially available.

656 IEEE TRANSACTIONS ON INFORMATION THEORY. VOL 41. NO. 3 , MAY I Y Y S

It should be noted that our view of an arithmetic code
is slightly different from the usual. We assume that block
probabilities are fed into the encoder and decoder and not
conditional probabilities as usual. The reason for this is that
it creates a better match between our modeling algorithm and
the arithmetic code, and avoids multiplications.

If we are ready to accept a loss of at most 2 bits coding
redundancy, we are now left with the problem of finding good,
sequentially available, coding distributions.

V. PROBABILITY ESTIMATION

The probability that a memoryless source with parameter B
generates a sequence with a zeros and b ones is (1 - 6 ')"Bb.
If we weight this probability over all 6' with a (i! i)-Dirichlet
distribution we obtain the so-called Krichevsky-Trofimov es-
timate (see [5]) .

Dejinition 4: The Krichevski-Trofimov (KT) estimated
probability for a sequence containing a 2 0 zeros and b 2 0
ones is defined as

Pc(n.b) = (1 - 6')"Ob do. (8)

This estimator has properties that are listed in the lemma
that follows. The lemma is proved in Appendix 11.

Lemma 1 : The KT-probability estimator P, (a , b)
1) can be computed sequentially, i.e., Pe(O,O) = 1, and for
a 2 0 and b 2 0

a + ;
Pe(a + 1. b) = ~ . Pe(a. b) a + b + l

and

P,(a. b + 1) = ~ b f . P,(a.b) (9) a + b + l

2) satisfies, for U + b 2 1, the following inequality:

The sequential behavior of the KT-estimator was studied
by Shtarkov [171. Another estimator, the Laplace estimator,
was investigated by Rissanen [lo], [111. This estimator can be
obtained by weighting (1 - B)"B6 with B uniform over [0,1].

For the KT-estimator the parameter redundancy can be
uniformly bounded, using the lower bound (see Lemma 1)
on P,(a. b) , i.e.

for all c1. + b 2 1 and all 6' E [O! 11. It is impossible to prove
such a uniform bound for the Laplace estimator.

VI. CODING FOR AN UNKNOWN TREE SOURCE

A. Dejinition of the Context-Tree Weighting Method

Consider the case where we have to compress a sequence
which is (supposed to be) generated by a tree source, whose
suffix set S E CD and parameter vector 0 s are unknown

>
>
>

c;Li,i
5/64

(a , b) = (4 ,3)
P, = 512048

P, = 95132768

iji
Fig. 2. Weighted context tree 7 3 for 1 1 : = 0 1 1 U 1 U U
x : - D = " ' 010.

and

to the encoder and the decoder. We will define a weighted
coding distribution for this situation, study its performance,
and discuss its implementation. The coding distribution is
based on the concept of a context tree (see Fig. 2) .

Dejnition 5: The context tree 70 is a set of nodes labeled
s, where s is a (binary) string with length l (s) such that
0 5 l (s) 5 D . Each node s E 70 with l (s) < D, "splits
up" into two nodes, Os and Is. The node s is called the parent
of the nodes 0s and I s , who in turn are the children of s. To
each node s E 70, there correspond counts a,< 2 0 and b, 2 0.
For the children 0s and 1s of parent node s , the counts must
satisfy a o S + ul , = U, and bo, + b l , = b,.

Now, to each node there corresponds a weighted probability.
This weighted probability is defined recursively on the context
tree 70. Without any doubt, this is the basic definition in this
paper.

Dejinition 6: To each node s E 70. we assign a weighted
probability P i which is defined as

The context tree together with the weighted probabilities of
the nodes is called a weighted context tree.

This definition shows a weighting of both the estimated
probability in a node and the product of the weighted proba-
bilities that correspond to its children. The next lemma gives
another way of looking at the weighting that is performed in
(12). It explains that a weighted probability of a node can
be regarded as a weighting over the estimated probabilities
corresponding to all (sub-) models that live above this node.
The cost (see (2)) of a (sub-) model determines its weighting
factor. The proof of this lemma can be found in Appendix 111.

WILLEMS er al.: THE CONTEXT-TREE WEIGHTING METHOD 651

Lemma 2: The weighted probability P:, of a node s E 7 D B. An Upper Bound on the Redundancy
with l (s) = d for 0 5 d 5 D satisfies First we give a definition.

2 - r D - d (u) = 1.
U E C o - d

The summation is over all complete and proper suffix sets U .
To be able to define a weighted coding distribution, we

assume that the counts (as . b s) , s E 70 are determined by the
source sequence zi seen up to now, assuming that xYpD are
the past symbols.

Dejnition 7: For each s E 70 let U ~ (. E ~ ~ Z ! - ~) , respec-
tively b , (z i / ~ : - ~) , be the number of times that :I-, = 0,
respectively 2, = 1, in ~4 for 1 5 7 5 t such that x:I:(,, = s .

The weighted probabilities corresponding to the nodes s E 70
are now denoted by P;)(x:I.cypD). For any sequence .E:-~ of
past symbols, we define our weighted coding distribution as

(14)
A Pc(r4 Iz:-o) = P;(zilI;Y-D)

for all xi E (0. t = 0. 1.. . . . T, where X is the root node
of the context tree 70.

This coding distribution determines the context-tree weight-
ing method. Note that the counts indeed satisfy the restrictions
mentioned in Definition 6.1. To verify that it satisfies (6) we
formulate a lemma. The proof of this lemma can be found in
Appendix IV.

Lemma 3: Let t = 1.2. T . If s E 70 is not a suffix
of .E:I~, then

hence y(.) is a convex-n continuation of logz + 1 for
0 5 z < 1 satisfying $0) = 0.

The basic result concerning the context-tree weighting tech-
nique can be stated now.

Theorem 2: The individual redundancies with respect to
any source with model S E CD and parameter vector 8 s
are upper-bounded by

T
I-)(l.TI.r:-~.s.@s) < rD(s) +]SI?(-) + 2 (18)

IS1

for all .rT E (0. l}T, for any sequence of past symbols . I - Y - ~ ,
if we use the weighted coding distribution specified in (14).

Note that (18) can be rewritten as (see (19) at the bottom
of this page). The redundancy bound in Theorem 2 holds
with respect to all sources with model S E C D and parameter
vector O s , and not only the actual source. Using the definition
of redundancy (see (5)) we therefore immediately obtain an
upper bound on the codeword lengths.

Corollaty I : Using the coding distribution in (14), the
codeword lengths L(.rTlzy-D) are upper-bounded by

and, if s is a suffix of x:i;b, then S E C O , and a parameter vector 0 s . Let

since X is a suffux of all strings x:Ib. From this we may
conclude that our weighted coding distribution satisfies (6)
after having verified that weighted probabilities are always
positive.

We are now ready to investigate the redundancy of the
context tree weighting method.

658

For the last term, the coding redundancy, we obtain, using
Theorem 1, that

We treat the parameter redundancy, the middle term, as
follows:

Pa(2TIIC.:-D.S. O S) (1 - I9,)W~~
n P e ((~ , . 6,) S E S Pe(%. b,)

= log 1%
SES

The product

SES

makes it possible to split up the parameter redundancy in IS1
terms representing the parameter redundancies corresponding
to each of the IS1 suffixes in S . The term corresponding to
suffix s E S can be upper-bounded by log (U, + b,) + 1 as
we have seen before in (1 1); however, only for a,+b, > 0. For
a, + b, = 0 such a term does not contribute to the redundancy.
This is why we have introduced the function y. Its fl-convexity
makes it possible to apply Jensen's inequality (see Cover and
Thomas, [3, p. 251).

What remains to be investigated is the first term in (21), the
model redundancy term. It follows from Lemma 2 that

P i =
2 T r D (l A) Pe,(us. b,) 2 2 - r D (s) J-J P,(us . b s) .

l A t C D BEU S E S
(24)

Using (14) we obtain the following upper bound for the model
redundancy:

Combining (22), (23), and (25) in (21) yields the theorem.
Theorem 2 is the basic result in this paper. In this theorem

we recognize beside the coding and parameter redundancy the
model redundancy. Model redundancy is a consequence of not
knowing the (actual, or best in the sense of minimizing (20))
model S, and therefore not being able to take distribution

IEEE TRANSACTIONS ON INFORMATION THEOKY. VOL. 41, NO. 3, MAY 1995

as coding distribution. This results in a loss, the model
redundancy, which is upper-bounded by r D (S) bits. Note that
in Section I1 we have described a natural code that would need
rD(S) bits to specify the model S . Therefore, our weighted
method is at least as good as a two-pass method, in which first
the best model is determined and transmitted, followed by the
code for the sequence given that model.

Example 2: Suppose a source generated the sequence =
0110100 with sequence of past symbols . I ; : - ~ = . . .010.

For D = 3 we have plotted the weighted context tree
70 in Fig. 2. Node s contains the counts (a,9. b,), the
Krichevsky-Trofimov estimate P, (a,. b s) , and the weighted
probability P:,. The coding probability corresponding to this
sequence is '35132768.

The upper bound for the model redundancy with respect to
the model S = (00.10. l} of the source from Example 1 is
r D (S) = 5 bits. This also follows quite easily from

(; P p (f I l . h)) .

C. Implementation of the Context-Tree Weighting Method

Before discussing implementation issues we refer to Ap-
pendix I for notation concerning arithmetic encoding and
decoding.

I) Encoding: First we set

Then, for t = 1. '2. Y', we create nodes

for d = 0.1. D (if necessary), we do a dummy 0-update
on these nodes to find

and we then do the actual update of the nodes s (d) for
d = 0.1. ' . . . D for X t = .rt. This results in

WILLEMS et al.: THE CONTEXT-TREE WEIGHTING METHOD 659

2) Decoding: First we set

B(qq.&,) := 0

and determine F, from

C l C 2 . ' . CL(ey)CL(2y)+lr ' ' . .

Then, for t = 1.2, . . . , T , we create nodes

s (d) := xi:;

for d = 0,1, . . . , D (if necessary), we do a dummy 0-update
on these nodes to find

Pc(z"ll. xt = Olz:pD)

we compare F, with

B(z;-llz:-D) + P,(z;-l.xt = 01z:-,)

B(zi-1. X t = zt1d-,)

to find :ct, update B(zi-'lz:-,) to

and we then do the actual update of the nodes s (d) for
d = 0 , 1 , . . . , D for X t = xt . This yields

P c (x y , xt = .t).

After having processed ~ 1 . ~ 2 . . . z~ we compute L (z r) from
Pc(zy) so that we know the start of the next codeword.

3) Comments: We assume that a node s E I, contains
the pair (U,, b s) , the estimated probability P, (a,, b,), and the
weighted probability P i . When a node is created, the counts
a, and b, are made 0, the probabilities P, (a,, b,) and P i are
made 1.

Doing a dummy 0-update of the nodes s (d) for d =
0 , l D means that we assume that X t = 0. Then, for
d = D , D - 1, . . . , 0, we update as indicated by (9) in Lemma
1

(27)

where the tilde above a variable indicates that this variable is
a temporary one. After that we form

pS,(w .- - .- P&,(D) + 1. b , (D))

and for d = D - 1, D - 2. . . . ,0, we compute

P:(d) := -P,(a,(d) 1 - + 1, b s (d)) + -p~t--d--IS(d)PCt--d--IS(d) 1 -
1L' 2 2

(28)
where we note that

so P;("') was changed, and P ~ i - " - l s (d) has remained the
same (see Lemma 3). All this eventually results in

Pc(."l-'. xt = O / d p ,) .

It will be clear from (39) that (see (29) at the bottom of
this page). It should be noted that we use block probabilities
to feed into the arithmetic encoder and decoder instead of
conditional probabilities as usual. This avoids multiplications
in the arithmetic encoder and decoder, which is a pleasant side
effect of the weighted approach.

If X t = 0, the actual update is identical to (27) and (2 0
the only difference is that now we update Pe(as: b,) and Pl,
and increment a , instead of computing the temporary values
P,(a,. b,) and P i . If X t = 1, the actual update requires
incrementing of b,, etc. Note that we only have to update the
nodes s (d) for d = 0.1. D , the nodes along the path in
the context tree that is determined by the past symbols .:I;.

The codeword C " (L ?) is finally computed as in definition
(36) in Appendix I and transmitted to the decoder.

The decoder forms F, as in (35) in Appendix I. Note that
F, is compared to the threshold

D (x i p ') = B (x ~ - ~ / : c : ~ ~) + P,(:rt-l3Xt = O~:C:-,)

see (42), Appendix I. Finally, the length L (z r) is computed
as in Definition 11.

4) Complexity Issues: For each symbol xt we have to visit
D+l nodes. Some of these nodes have to be created first. From
this it follows that the total number of allocated nodes cannot
be more than T (D + 1). This makes the storage complexitl),
not more than linear in T . Note also that the number of nodes
cannot be more than 2D+1 - 1, the total number of nodes in
ID. This shows exponential behavior in D. We did not take
into account here, that for infinite precision arithmetic, the
number of digits that are needed to specify the counts a, and
b, and the probabilities P,(a,. b,) and P i , is growing with
increasing t , making the storage space for one node measured
in, e.g., bytes getting bigger each time.

The computational complexity, i.e. the number of additions,
multiplications, and divisions, is proportional to the number
of nodes that are visited, which is T (D + 1). Therefore, this
complexity is also linear in T . Again we have neglected the
fact here, that for infinite precision arithmetic the number
of digits that are needed to specify the counts U, and b,
and the probabilities P,(us,bs) and P i , is growing rapidly,
making additions, multiplications, and divisions becoming
more complex with increasing t .

VII. OTHER WEICHTINGS

The coding distribution defined by (12) (and (14)) yields
model cost not more than 21SI - 1, i.e., linear in ISI, if we
assume that S has no leaves at depth D. This is achieved

660 IEEE TRANSACTIONS ON INFORMATION THEORY. VOL 41. NO. 3. MAY 19Y5

by giving equal weight to P,(a,. 15,) and PZP? in each
(internal) node s E 7 D .

It is quite possible, however, to assume that these weights
are not equal, and even to suppose that they are different
for different nodes s. In this section we will assume that the
weigthing in a node s depends on the depth l (s) of this node
in the context tree 70. Hence

P,“, = nqSIP,(a,. b,) + (1 - ~ y l (~)) P z P $, with LYD = 1.
(30)

Now note that each model can be regarded as the empty
(memoryless) model { A } to which a number of nodes may
have been added. The cost of the empty model is -logcro,
we can also say that the model cost of the first parameter is
-log U () bits. Our objective is now that, if we add a new node
(parameter) to a model, the model cost increases by 6 bit, no
matter at what level d we add this node. In other words

A

for 0 5 d 5 D - 1, or consequently

(;) = 2 - 6 (&) 2 + l

If we now assume that 6 = 0, which implies that all models
that fit into S E C D have equal cost, we find that

(OD-l)-’ = 2, (a D - *) - l = 5. (a D _ 3) - l = 26.
(a D - 4) - ’ = 677

etc. This yields a cost of log677 = 9.403 bits for all 677
models in 7 4 and 150.448 bits for D = 8, etc. Note that the
number of models in C D grows very fast with D. Incrementing
D by one results roughly in squaring the number of models
in C D . The context-tree weighting method is working on all
these models simultaneously in a very efficient way!

If we take 6 such that -1oga0 = 6, we obtain model cost
61S1, which is proportional to the number of parameters IS\.
For D = 1 we find that

= 0.694 bit
& - 1 6 = -log ~

2
for D = 2 we get 6 = 1.047 bits, 6 = 1.411 bits for D = 4,
and for D = 8 we find h = 1.704 bits, etc.

VIII. FINAL REMARKS

We have seen in Lemma 2 that P,(Z~~X~-,) as given by
(14) is a weighting over all distributions

J-J Pe(as. b,)
SE.5

corresponding to models S E Co. From (8) we may conclude
that n Pe(a3. b,)

SE.5

is a weighting of

where all components of 0.5 are assumed to be ($. $) -
Dirichlet distributed. Therefore, we may say that P,-(.L:~.&,)
is a weighting over all models S E C D and all parameter
vectors O s , also called a “double mixture” (see [20]). We
should stress that the context-tree weighting method induces a
certain weighting over all models (see Lemma 2), which can
be changed as, e.g., in Section VI1 in order to achieve specific
model redundancy behavior.

The redundancy upper bound in Theorem 2 shows that our
method achieves the lower bound obtained by Rissanen (see,
e.g. [9, Theorem 11) for finite-state sources. However, our
redundancy bound is in fact stronger, since it holds for all
source sequences 3;: given . ~ ‘ i) - ~ and all T , and not only
averaged over all source sequences : I . ; given xYpD only for
T large enough. Our bound is also stronger in the sense that
it is more precise about the terms that tell us about the model
redundancy.

The context-tree weighting procedure was presented first
at the 1993 IEEE International Symposium on Information
Theory in San Antonio, TX (see 1221). At the same time
Weinberger, Rissanen, and Feder [2 I] studied finite-memory
tree sources and proposed a method that is based on state
estimation. Again an (artificial) constant C and a function
g (t) were needed to regulate the selection process. Although
we claim that the context-tree method has eliminated all these
artificial parameters we must admit that the basic context-tree
method, which is described here, has D as a parameter to be
specified in advance, making the method work only for models
S E CD, i.e., for models with memory not larger than D. It
is however possible (see [25]) to modify the algorithm such
that there is no constraint on the maximum memory depth D
involved. (Moreover, it was demonstrated there that it is not
necessary to have access to , c :) - ~ .) This implementation thus
realizes injinite context-tree depth D . The storage complexity
still remains linear in T . It was furthermore shown in [25]
that this implementation of the context-tree weighting method
achieves entropy for any stationary and ergodic source.

In a recent paper, Weinberger, Merhav, and Feder [20]
consider the model class containing finite-state sources (and
not only bounded memory tree sources). They strengthened
the Shtarkov pointwise-minimax lower bound on the individ-
ual redundancy ([17, Theorem l]), i.e., they found a lower
bound (equivalent to Rissanen’s lower bound for average
redundancy [9]) that holds for most sequences in most types.
Moreover, they investigated the weighted (“mixing”) approach
for finite-state sources. Weinberger el al. showed that the
redundancy for the weighted method achieves their strong
lower bound. Furthermore, their paper shows by an example
that the state-estimation approach, the authors call this the
“plug-in” approach, does not work for all source sequences,
i.e., does not achieve the lower bound.

Finite accuracy implementations of the context-tree weight-
ing method in combination with arithmetic coding are studied
in [24]. In [23] context weighting methods are described that
perform on more general model classes than the one that we
have studied here. These model classes are still bounded mem-
ory, and the proposed schemes for them are constructive just
like the context-tree weighting method that is described here.

WILLEMS et al.: THE CONTEXT-TREE WEIGHTING METHOD 66 1

Although we have considered only binary sources here,
there exist straightforward generalizations of the context-tree
weighting method to nonbinary sources (see e.g. [IS]).

Definition 11: The codeword rL(.rF) for source sequence
xT consists of

L(.cT) 2 [log (l /P r (J f)) l + 1

APPENDIX I
ELIAS ALGORITHM

binary digits such that

The first idea behind the Elias algorithm is that to each F(cL(. rT)) 2 (B(..:) . 2L(x:)1 . 2-L(z : j (36)
source sequence XT there corresponds a Jubinterval of [O. 1).
This principle can be traced back to Shannon [161. where [U] is the smallest integer 2 U. We consider only

sequences xy with Pc(.cF) > 0. Dejinition 9: The interval I (J ~) corresponding to
Since

E { 0 . 1 j t . t = 0 . 1 :... T

is defined as

where
1 El(.;) = P&;)

5; <s;

for some ordering over (0. l j t .
Note that for k = 0 we have that Pc(q5) = 1 and B(q5) = 0

(the only sequence of length 0 is q5 itself), and consequently,
I (4) = [0, 1). Observe that for any fixed value of t ; t =
0 , l T , all intervals I (& ;) are disjoint, and their union
is [0, 1). Each interval has a length equal to the corresponding
coding probability.

Just like all source sequences, a codeword cL = c1c2 . . . C L

can be associated with a subinterval of [O. 1).
Definition 10: The interval J (c L) corresponding to the

codeword cL is defined as

J (c L) 6 [F (c L) . F (c L) + 2 - L) (34)

with

F (c L) 2 ~ 2 ~ ' .
l=l .L

To understand this, note that cL can be considered as
a binary fraction F (c L) . Since cL is followed by other
codewords, the decoder receives a stream of code digits from
which only the first L digits correspond to cL. The decoder can
determine the value that is represented by the binary fraction
formed by the total stream q c 2 . . . cLcL+l . . 1, i.e.

F, 2 s 2 - l (3 5)
l = l . x

where it should be noted that the length of the total stream is
not necessarily infinite. Since

we may say that the interval J (c L) corresponds to the code-
word cL.

To compress a sequence : cy , we search for a (short) code-
word ."(.?) whose code interval J (c L) is contained in the
sequence interval I (xT) .

(38)

we may conclude that

J (c L (: r T)) c I(.:)
and, therefore, F, E I(.:). Since all intervals I (:rT) are
disjoint, the decoder can reconstruct the source sequence :rT
from F,. Note that after this reconstruction, the decoder can
compute c"(xT) , just like the encoder, and find the location
of the first digit of the next codeword. Note also that, since all
code intervals are disjoint, no codeword is the prefix of any
other codeword. This implies also that the code satisfies the
prefix condition. From the definition of the length L(x?) we
immediately obtain Theorem 1 .

The second idea behind the Elias algorithm, is to order the
sequences of length t lexicographically, for 1;: t = 1. T .
For two sequences J;: and 2; we have that xi < 2; if and
only if there exists a 7 E { 1 . 2 t } such that z i = for
i = 1.2. 7 - 1 and 2, < iT. This lexicographical ordering
makes it possible to compute the interval I(:rT) sequentially.
To do so, we transform the starting interval I (4) = [O, 1)
into I (. r l) . I (z ~ : I ; ~) , . . ., and I(x1x2.. . : c ~) , respectively. The
consequence of the lexicographical ordering over the source
sequences is that

B (z i) = rr(?;) = re(.",')
5; <r; ,.;-I I

+ Pr(z;-l.i . ,)
? , < X i

= B(:1$1) + Pc.(..(.."l-l. &). (39)
.Et <st

In other words B(:ri) can be computed from B(zi- ') and
Pc(:c;-'. X t = 0). Therefore the encoder and the decoder
can easily find I (z i) after having determined I(x;-'), if i t
is "easy" to determine probabilities PC(x;-l.Xt = 0) and
Pc(z ; - l . x - - 1) after having processed 51x2 . . f 1 ~ t - 1 .

Observe that when the symbol .xt is being processed, the
source interval

I (X - 1) = [B(:ri-'). B(.ri-') + Pc(zc",-l))

662 IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. 41. NO 3, MAY 1995

is subdivided into two subintervals We obtain (9) from

The encoder proceeds with one of these subintervals depending
on the symbol .rt, therefore I (z - i) C I (.L- ') . This implies that

(41) I (. l f) C q. r f -1) c ' ' ' 5 I ($) .

The decoder determines from F, the source symbols
~ 1 . .c2. . . . , .rT, respectively, by comparing F, to thresholds
D(T"1').

Definition 12: The threqholds D(.r;-l) are defined as

for f = 1 . 2 :... 2'.
Observe that threshold D(.r;-') splits up the interval

I ($ ') in two parts (see (40)). It is the upper boundary
point of I(.L;-'. X t = 0) but also the lower boundary point
of I (,r;- l .Xt = 1). Since always F, E I (T ;) 5 I(.ci), we
have for D(.C-- ') that

F, < B(.ci) + Pc(.ci) = B(.r-') + Pc(.c:-'. X t = 0)
= ~(. r - - ') . if .rt = o (43)

and

2) Define

(47)

First we assume that a 2 1. Consider

A((L + 1. b) uU(u + l / 2) - -
A(u. b) (U + 1)"+'

To analyze (48) we define, for f E [l. x), the functions

The derivatives of these functions are

and

Take

1 / 2
t + 1 / 2

(1 = ~ Therefore, the decoder can easily find ,rt by comparing F,
to the threshold D(.r-- ') ; in other words, it can operate
sequentially.

Since the code satisfies the prefix condition, it should not
be necessary to have access to the complete F, for decoding

and observe that 0 < (1 5 1/3. Then from

t 1 - (Y (13 2
= In __ = - 2 (0 + + + . . .) 5 -2tr ln

I.:. Indeed, it can be shown that only the first L(.cT) digits t + l l + t r . 3 d

of the codestream are actually needed. (5 1)
1 -~ - -

t + 1 / 2

APPENDIX I1
PROPERTIES OF THE KT-ESTIMATOR

Proofi The proof consists of two parts.
1) The fact that Pp(O. 0) = 1 follows from

we obtain that

Therefore

WILLEMS et al.: THE CONTEXT-TREE WEIGHTING METHOD 663

we may conclude that We have used the induction hypothesis in the second step of
the derivation. Conclusion is that the hypothesis also holds for
d - 1, and by induction for all 0 5 d 5 D. The fact

clgo
d t

This results in 2-rn-d(24 =

a + +)a+b+1/2 > linl (a + + l)o+b+l/Z = e. U E C D - d
-

(54) can be proved similarly if we note that (a+h a+b+cc f L + b

Next we investigate the case where a = 0. Note that this
implies that b 2 1, and consider

If we again use the fact that

(WlO APPENDIX Iv
UPDATING PROPERTIES

Proof First note that if s is not a suffix of x::; no
descendant of s can be a suffix of xf-;. Therefore, for s
and its descendants the a- and b-counts remain the same, and
consequently also the estimated probabilities P, (a,. b,) , after
having observed the symbol x t . This implies that also the
weighted probability P i does not change and (15) holds.

For those s E 70 that are a suffix of x::; we will show that
the hypothesis (16) holds by induction. Observe that (16) holds
for l (s) = D. To see this note that for s such that Z(s) = D

dt
we find that

A(1,b) 2 ; . A(0.b) . (57)

Inequality (55) together with (57), now implies that

A(a + 1. b) 2 A(a. b) , for a 2 0. (58)
Therefore

A(a. b) 2 A (0 , l) = A(1:O). (59)
The lemma now follows from the observation

A(1,O) = A(0: 1) = l / 2 . P;'.(0) + P;(l) = Pe(as + 1. b,) + P,(a,. b, + 1)

= Pe(as. b.5) = P:>(4). (62) It can also easily be proved that A(u.b) 5 m. Both
bounds are tight. Here we use the following notation :

APPENDIX I11
WEIGHTING PROPERTIES

P;,(o) = P(;(.E;-l. xt = olz:-D)

Proof We prove by induction that the hypothesis in
Lemma 2 holds. For d = D this is true. Next assume that

P;,(I) = Pt;,(,x-'. xt = ~ l z y - ~)

the hypothesis also holds for 0 < d 5 D. Now consider a
node s with l (s) = d - 1, then

Next assume that (16) holds for l (s) = d,O < d 5 D. Now
consider nodes corresponding to strings s with l (s) = d - 1.
Then 1 s is a postfix of xi::, and 0s not, or vice versa. Let
1s be a postfix of :ri:b, then

71 E v

1 1
P, (0) + P i (1) = P, (a , + 1. b,) + r:: (0) . P; (0)

1 1 + f&,. b, + 1) + .PP(2

+ -PZ" 2 (4) . P i "(0) + - 2 P;S($). Pis(1)

1) .r;y 1)
1 1

= - 2 P,(a, + 1. b,) + 5 Pr(as. b, + 1)
1 1

664 IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. 41. NO. 3, MAY 1995

The induction hypothesis is used to obtain the fourth equality.
The second equality follows from (15). The proof is analogous
when O s is a postfix of X E ~ L instead of Is.

ACKNOWLEDGMENT

This research was carried out in May 1992 while the second
author visited the Information Theory group at Eindhoven
University. The authors wish to thank the Eindhovens Uni-
versiteitsfonds for supporting this visit.

The authors wish to thank P. Volf who participated in
research pertaining to Section VII. The comments from the
reviewers and the advice of the Associate Editor M. Feder are
also acknowledged.

REFERENCES

[1 1 N. Abramson, Information Theon and Coding. New York: McGraw-
Hill, 1963, pp. 61-62.

121 T. M. Cover, “Enumerative source encoding,” IEEE Trans. Inform.
Theon, vol. IT-19, pp. 73-77, Jan. 1973.

131 T. M. Cover and J. A. Thomas, Elemenrs oflnformarian Theory. New
York: Wiley, 1991.

[4] F. Jelinek, Probabilistic Information Theory. New York: McGraw-Hill,
1968, pp. 47-89,

[5] R. E. Krichevsky and V. K. Trofimov, “The performance of universal
encoding,” IEEE Trans. Inform. Theon, vol. IT-27, pp. 199-207, Mar.
1981.

[6] R. Pasco, “Source coding algorithms for fast data compression,” Ph.D.
dissertation, Stanford Univ., Stanford, CA, 1976.

[7] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM
J . Res. Devel., vol. 20, p. 198, 1976.

181 -, “A universal data compression system,“ /EEE Trans. /nfbi-m.
Theon, vol. IT-29, pp. 656-664, Sept. 1983.

[9] -, “Universal coding, information, prediction, and estimation,”
IEEE Trans. Inform. Theon, vol. IT-30, pp. 629-636, July 1984.

[I O] -, “Complexity of strings in the class of Markov sources,” IEEE
Trans. Inform. Theon., vol. IT-32, pp. 526-532, July 1986.

[1 I] -, Srochasric Complexity in Sratistictil Inquiry, Teaneck, NJ :
World Scientific, 1989.

[I21 J. Rissanen and G. G. Langdon, Jr., “Universal modeling and coding,”
IEEE Trans. Inform. Theon, vol. IT-27, pp. 12-23, Jan. 1981.

[131 B. Ya. Ryabko, “Twice-universal coding,“ Probl. Infi)rm. Trun.sm., vol.
20, no. 3, pp. 24-28. July-Sept. 1984.

[141 -, “Prediction of random sequences and universal coding.“ Pmbl.
Inform. Transm., vol. 24, no. 2, pp. 3-14. Apr.-June 1988.

[IS] J. P. M. Schalkwijk, “An algorithm for source coding,” IEEE Trnns.
Inform. Theory, vol. IT-18, pp. 395-399, May 1972.

[I61 C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J . , vol. 27, pp. 379423, Ju ly 1948. Reprinted in Key Pqirrs in
rhe Developmenr of Information Throi?, D. Slepian, Ed. New York:
IEEE Press, 1974, pp. 5-18.

171 Y. M. Shtarkov, “Universal sequential coding of single messages,”
Probl. Inform. Transm., vol. 23, no. 3, pp. 3-17. July-Sept. 1987.

181 Tj. J. Tjalkens, Y. M. Shtarkov, and F. M . J. Willems, “Sequential
weighting algorithms for multi-alphabet sources,” in 6rh Joinr Swedish-
Russian In/. Workshop on Informatioii Theor! (Mdle, Sweden, Aug.
22-27, 1993), pp. 230-239.

191 M. J . Weinberger. A. Lempel, and J . Ziv, “A sequential algorithm for
the universal coding of finite memory sources.” IEEE Trans. Inform.
Theon, vol. 38, pp. 1002-1014, May 1992.

[20] M. J. Weinbeger, N. Merhav, and M. Feder, “Optimal sequential
probability assignment for individual sequences,” IEEE Trcms. Iqform.
Theon, vol. 40, pp. 384-396, Mar. 1994.

[21] M. J. Weinberger, J. Rissanen, and M. Feder. “A universal finite memory
source,” submitted for publication, Aug. 1992; to appear.

1221 F. M. J. Willems, Y. M. Shtarkov, and TJ. J . Tjalkens, “Context tree
weighting : A sequential universal source coding procedure for FSMX
sources,” in Proc. IEEE Inr. Syinp. on Informtition Theon (San Antonio,
TX, Jan. 17-22, 1993), p. 59.

[23] -, “Context weighting for general finite context sources,” submit-
ted to IEEE Trans. Inforni. Theon, Sept. 1994.

[24] F. M. J. Willems, “The context tree weighting method : Truncated
updating,” submitted to IEEE Trtrns. Inform. Theory, Aug. 1994.

1251 -, “Extensions to the context tree weighting method,” in Proc.
IEEE Inr. Symp. on Infi,rmution Theory (Trondheim, Norway, June
27-July I , 1994). p. 387.

