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Summary

* The problem
 The mathematical model

 Functional classification

1. Fourier filtering
2. Wavelet filtering

* Applications

—p.2/35



The problem

* In many experiments, practitioners collect
samples of curves and other functional
observations.
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The problem

* In many experiments, practitioners collect
samples of curves and other functional
observations.

* We wish to investigate how classical learning
rules can be extended to handle functions.
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A typical problem




A speech recognition problem
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Classification

» Given a random pair (X,Y) € R? x {0, 1}, the
problem of classification 1s to predict the
unknown nature Y of a new observation X.
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Classification

» Given a random pair (X,Y) € R? x {0, 1}, the
problem of classification 1s to predict the
unknown nature Y of a new observation X.

» The statistician creates a classifier
g:R*— {0,1}

which represents her guess of the label of X.
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Classification

» Given a random pair (X,Y) € R? x {0, 1}, the
problem of classification 1s to predict the
unknown nature Y of a new observation X.

» The statistician creates a classifier
g:R*— {0,1}

which represents her guess of the label of X.

 An error occurs if g(X) # Y, and the probability
of error for a particular classifier g 1s

L(g) = P{g(X) # Y}.
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Classification
 The Bayes rule

(o) {0 IR =0)X =2} > P(Y =1|X =1}
g | 1 otherwise,

1s the optimal decision. That 1s, for any decision
function g : R — {0, 1},

P{g"(X)#Y} <P{g(X) #Y}.
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Classification
 The Bayes rule

(o) {0 IR =0)X =2} > P(Y =1|X =1}
g | 1 otherwise,

1s the optimal decision. That 1s, for any decision
function g : R — {0, 1},

P{g"(X)#Y} <P{g(X) #Y}.

* The problem 1s thus to construct a reasonable
classifier g,, based on 1.1.d. observations

(X17 }/1)7 R (Xn7 Yn)
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Error criteria
* The goal 1s to make the error probability

P{g,(X) #Y}

close to L~*.
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Error criteria
* The goal 1s to make the error probability

P{g,(X) #Y}

close to L~*.

e Definition. A decision rule g,, is called
consistent if

P{g.,(X)#Y} — L asn — oc.
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Error criteria
* The goal 1s to make the error probability

P{g,(X) #Y}

close to L~*.

e Definition. A decision rule g,, is called
consistent if

P{g.,(X)#Y} — L asn — oc.

e Definition. A decision rule is called universally
consistent if it is consistent for any distribution of

the pair (X,Y).
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Two simple and popular rules

e The moving window rule:

o) = 0 if > iy Lvico.xieB, 0} 2 Doict L{Vi=1,X,€B,0,)
1 1 otherwise.
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Two simple and popular rules

e The moving window rule:

gn(z) = 0 if > iy Lvico.xieB, 0} 2 Doict L{Vi=1,X,€B,0,)
1 1 otherwise.

e The nearest neighbor rule:

f : k., kn
0 if > ", Ly (z)=0} = D it Ly (2)=1}

I (Qj) 1 otherwise.

\
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Two simple and popular rules

e The moving window rule:

gn(z) = 0 if > iy Lvico.xieB, 0} 2 Doict L{Vi=1,X,€B,0,)
1 1 otherwise.

e The nearest neighbor rule:

f : k., kn,
0 if > Liv@)=0) = D_ic1 Ly (@)=1)

I (Qj) 1 otherwise.

\

* Devroye, Gyorfi and Lugosi (1996).
A Probabilistic Theory of Pattern Recognition.
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Notation

 The model. The random variable X takes
values in a metric space (JF, p). The distribution

of the pair (X, Y) is completely specified by p
and n:

uw(A) =P{X € A} and n(x)=P{Y =1/X ==z}
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Notation

 The model. The random variable X takes
values in a metric space (JF, p). The distribution

of the pair (X, Y) is completely specified by p
and n:

uw(A) =P{X € A} and n(x)=P{Y =1/X ==z}

 And all the definitions remain the same...
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Assumptions

 (H1) The space F 1s complete.
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Assumptions

 (H1) The space F 1s complete.

« (H2) The following differentiation result holds:

|

lim / ndu =mn(x) 1n p-probability.
0B Jp,, Y
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Assumptions

 (H1) The space F 1s complete.

« (H2) The following differentiation result holds:

|

lim / ndu =mn(x) 1n p-probability.
0B Jp,, Y

* Afie aie aie...
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Results

* Theorem [consistency]. Assume that (H1) and
(H2) hold. If h,, — 0 and, for every k > 1,
Ni(h,/2)/n — 0asn — oo, then

lim L(g,) = L".

n—~ao

—p.12/35



Results

* Theorem [consistency]. Assume that (H1) and
(H2) hold. If h,, — 0 and, for every k > 1,
Ni(h,/2)/n — 0asn — oo, then

lim L(g,) = L".

n—oo

* h, >~ 1/loglogn: curse of dimensionality.
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Curse of dimensionality?

» Consider the hypercube [—a, a]¢ and an inscribed
hypersphere with radius » = a. Then

volume sphere /2

Ja = volume cube  d2¢-1T'(d/2)
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Curse of dimensionality?

» Consider the hypercube [—a, a]¢ and an inscribed

hypersphere with radius » = a. Then

;- volume sphere /2

*™ volume cube  d2+1T(d/2)
d 2 3 4 S5 6 7
fa 0.785 | 0.524 | 0.308 | 0.164 | 0.081 | 0.037
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Curse of dimensionality?

» Consider the hypercube [—a, a]¢ and an inscribed
hypersphere with radius » = a. Then

volume sphere /2

Ja = volume cube  d2¢-1T'(d/2)

d |1 2 3 4 S 6 7

fa | 1]0.78510.524 1 0.308 | 0.164 | 0.081 | 0.037

* As the dimension increases, most spherical
neighborhoods will be empty!
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Classification in Hilbert spaces

* Here, the observations X; take values in the
infinite dimensional space Lo([0, 1]).
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Classification in Hilbert spaces

* Here, the observations X; take values in the
infinite dimensional space Lo([0, 1]).

e The trigonometric basis, formed by the functions
Di(t) =1, hg;(t) = V2 cos(2mjt),

and  1Py;41(t) = V2sin(27jt), j=1,2,...,

is a complete orthonormal system in Lo([0, 1]).
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Classification in Hilbert spaces

* Here, the observations X; take values in the
infinite dimensional space Lo([0, 1]).

e The trigonometric basis, formed by the functions
Di(t) =1, hg;(t) = V2 cos(2mjt),

and  1Py;41(t) = V2sin(27jt), j=1,2,...,
is a complete orthonormal system in Lo([0, 1]).

e We let the Fourier representation of X; be

X;(t) = ZXM%'(ZL)-
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Dimension reduction

« Select the effective dimension d to approximate
each X; by

Xi(t) =~ ZXij%'(t)-
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Dimension reduction

« Select the effective dimension d to approximate
each X; by

Xi(t) =~ ZXij%'(t)-

* Perform nearest neighbor classification based on
the coefficient vector

X(d) — (Xz'la D0 ¢ 7Xid)

(4

for the selected dimension d.

—p.15/35



Data-splitting

* We split the data into
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Data-splitting
* We split the data into

p» atraining sequence

(X17 Y1)7 IR (Xfa }/ﬁ)
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Data-splitting
* We split the data into

p» atraining sequence
(X17 Y1)7 IR (Xfa }/ﬁ)
» atesting sequence

(X€—|-17 }/ﬁ—l-l)a IR (Xm—l-fa Ym+€)-
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Data-splitting
* We split the data into

p» atraining sequence
(X17 Y1)7 IR (Xfa }/ﬁ)
» atesting sequence

(XE—I—la Y€+1)7 IR (Xm+€7 Ym+€)-

* The training sequence defines a class of nearest
neighbor classifiers with members gy 1. 4.

—p.16/35



Empirical risk minimization

* The testing sequence 1s used to select a particular
classifier by minimizing the penalized empirical
risk

1 " | Ad
m Z {ge,k,d(Xz(-d))?éYz} | \/ﬁ

1€Im
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Empirical risk minimization

* The testing sequence 1s used to select a particular
classifier by minimizing the penalized empirical
risk

1 " | A
m Z {ge,k,d(ng))?éYz‘} | m

1€Im

 In practice, the regularization penalty may be
formally replaced by

M =0 ford<d, and \;j =-+oc0 ford > d,+1.
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Result

 Theorem [oracle inequality]. Assume that

O

Ze_”?l < 00. (1)

d=1
Then there exists a constant C' > 0 such that

L(gn,) — L”

< . ES e X . e ES
< in [(Ld L*) + it (L(gek,a) — L)

log ¢
NIy pusi-0y

m
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Result

 Theorem [oracle inequality]. Assume that

O

Ze_”?l < 00. (1)

d=1
Then there exists a constant C' > 0 such that

L(gn,) — L”

< clzlzﬂi [ + 1%%{;5 (L(gﬁ,k,d) - Ld)
log ¢
Ly =2

m
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Result

 Theorem [oracle inequality]. Assume that

O

Ze_”?l < 00. (1)

d=1
Then there exists a constant C' > 0 such that

L(gn,) — L”

<' * * |
<=1

log ¢
NIy pusi-0y

m
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Result

 Theorem [oracle inequality]. Assume that

O

Ze_”?l < 00. (1)

d=1
Then there exists a constant C' > 0 such that

L(gn,) — L”

<' >l<_ b S . e S
_g [(Ld L)ﬂggfg (L(gesa) — L) + }

log ¢
NIy pusi-0y

m
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Results

* Theorem [consistency]. Under the assumption

(1) and
log ¢
lim ¢ = oo, lim m = oo, lim ﬁzo,
n—aoo n—aoo n—aoo 144}

the classifier g,, is universally consistent.
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Results

* Theorem [consistency]. Under the assumption

(1) and
log ¢
lim ¢ = oo, lim m = oo, lim ﬁzo,
n—aoo n—aoo n—aoo 144}

the classifier g,, is universally consistent.

« Under stronger assumptions, the classifier g,, 1s
strongly consistent, that 1s

P{Qn ) # Y[(X1, Y1), ..., (Xa, Yn)} — L7
with probability one.
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Illustration
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Results

Method Error rates
0.10
FOURIER 0.21
0.16
0.36
NN-DIRECT 0.42
0.42
0.07
QDA 0.35
0.19
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Multiresolution analysis
c Vo C Vi CVaC...C Ly([0,1]).
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Multiresolution analysis

» VoCcVicVaC...C Ly([0,1]).

e ¢: the father wavelet such that
{¢pir:k=0,...,27 — 1} is an orthornormal
basis of V;.
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Multiresolution analysis

c Vo C Vi CVaC...C Ly([0,1]).

e ¢: the father wavelet such that
{¢pir:k=0,...,27 — 1} is an orthornormal
basis of V;.

* For each 7, one constructs an orthornormal basis
{jr : k=0,...,27 — 1} of W, such that
Viyn =V, @ W;. ¢ is the mother wavelet.
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Multiresolution analysis

c Vo C Vi CVaC...C Ly([0,1]).

e ¢: the father wavelet such that
{¢pir:k=0,...,27 — 1} is an orthornormal
basis of V;.

* For each 7, one constructs an orthornormal basis
{jr : k=0,...,27 — 1} of W, such that
Viyn =V, @ W;. ¢ is the mother wavelet.

» Any function X; of Ly ([0, 1]) reads

oo 27-—1

Xi(t) =) ) & abin(t) +1'doo(t) .

=0 k=0
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e Fix a maximum resolution level J and expand
each observation as

J—127-1

Xi(t) = >: >: & iin(t) +n'doo(t).

=0 k=0
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e Fix a maximum resolution level J and expand
each observation as

J—127-1

Xi(t) = >: >: & iin(t) +n'doo(t).

j=0 k=0

e Rewrite each X; as a linear combination of 27
basis functions v, :

2J
Xi(t) = Y Xijihy(t) .
i
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e Fix a maximum resolution level J and expand
each observation as

J—12/-1

Xi(t) = >: >: & iin(t) +n'doo(t).

=0 k=0

e Rewrite each X; as a linear combination of 27
basis functions v, :

2J
Xi(t) = Y Xijihy(t) .
=

 How to select the most pertinent basis functions?
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Thresholding

» Reorder the first 27 basis functions {¢1, ..., 19}
into {¢j,,...,; , } via the scheme
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Thresholding

» Reorder the first 27 basis functions {¢1, ..., 19}
into {¢j,,...,; , } via the scheme

14 4 14
2 2 2
E Xij1 > E X’ijg > .2 E Xisz :

* Wavelet coefficients are ranked using a global
thresholding on the mean of the square
coefficients.
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Classification

e Foreachd =1,...,27, let Déd) be a collection of
rules g9 : R? — {0, 1}.

—p.26/35



Classification

e Foreachd =1,...,27, let Déd) be a collection of
rules g9 : R? — {0, 1}.

e LetS o (m) denote the corresponding shatter

coefficients, and let S((}]g ) (m) be the shatter
coefficient of all rules {¢\? :d =1,...,27}.
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Selection step

« We select both d and ¢'¥ optimally by
minimizing the empirical probability of error:

(:57)

— arg min
©)
1<d<2”/,geD,

m Z 1 g @ (X Y]]

ZEjm
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Selection step

« We select both d and ¢'? optimally by
minimizing the empirical probability of error:

(ci,gw) =arg min — Z | S (X D) 2]

1<d<2’,geD”

£ zejm
e Theorem.
L(g) — L" < L;J — L™+ E« inf Lg(g(d)) -
| 1<d<2/, g(d)eDéd)

/

+CE \/ log (S, (m)

3
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Illustration

, “aa”, £ = 250, m = 250.

“Sh,,,



Methods

e W-QDA: Déd) contains quadratic discriminant
rules.

 W-NN: Déd) contains nearest-neighbor rules.

e W-T: Déd) contains binary trees.
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Methods

« W-QDA: Déd) contains quadratic discriminant
rules.

 W-NN: Déd) contains nearest-neighbor rules.

e W-T: Déd) contains binary trees.

* F-NN: Fourier filtering approach.

« MPLSR: Multivariate Partial Least Square
regression.
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Results

Method || Error rates d
W-QDA 0.1042 7.30
W-NN 0.1096 19.52
W-T 0.1253 9.10
F-NN 0.1277 | 48.76
MPLSR 0.0904 5.96
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A simulated example
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A simulated example
e Pairs (X;(t),Y;) are generated by:

Xu(t) = 5 (SIn(FInt) o (0450 EPT) fo () e
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A simulated example
e Pairs (X;(t),Y;) are generated by:

Xu(t) = 5 (SIn(FInt) o (0450 EPT) fo () e

» f.o =N(u,o°) where u ~ U(0.1,0.4) and
o ~ U(0,0.005)
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A simulated example
e Pairs (X;(t),Y;) are generated by:

Xu(t) = 5 (SIn(FInt) o (0450 EPT) fo () e

» f.o =N(u,o°) where u ~ U(0.1,0.4) and

o ~ U(0,0.005)
» [l and F? ~ U(50,150)
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A simulated example
e Pairs (X;(t),Y;) are generated by:

Xu(t) = 5 (SIn(FInt) o (0450 EPT) fo () e

» f.o =N(u,o°) where u ~ U(0.1,0.4) and
o ~ U(0,0.005)

» [ and F? ~ U(50,150)

> &~ N(O, 05)
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A simulated example
e Pairs (X;(t),Y;) are generated by:

Xu(t) = 5 (SIn(FInt) o (0450 EPT) fo () e

» f.o =N(u,o°) where u ~ U(0.1,0.4) and
o ~ U(0,0.005)
» [ and F? ~ U(50,150)
> &~ N(O, 05)
e Fori=1,....,n

0 1f p;n < 0.25
Y; = >
1 otherwise.
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Results

Method || Error rates d
W-QDA 0.0843 7.36
W-NN 0.1255 23.92
W-T 0.1275 20.48
F-NN 0.3493 75.88
MPLSR 0.4413 3.68
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Results

Method || Error rates d
W-QDA 0.0843 7.36
W-NN 0.1255 23.92
W-T 0.1275 20.48
F-NN 0.3493 75.88
MPLSR 0.4413 3.68
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Sampling

 In practice, the curves are always observed at
discrete time points, say ¢,, p = 1,..., P.
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Sampling

 In practice, the curves are always observed at
discrete time points, say ¢,, p = 1,..., P.

* There 1s only an estimation of the wavelet
coefficients available:

2.]
Xi(t) = ) Xiu(t),
j=1

where
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Sampling consistency

e Theorem. Let Déd) be the family of all k-nearest
neighbor rules, and suppose that

log ¢
lim £ =00, lim m = oo, hm—:O.
N— 00 n— 00 n—oo 1

Then the selected rule g is universally consistent,
that is

lim lim lim L(g) = L".

J—o00 n—oo P—oo
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