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THE MIXTURE APPROACH TO UNIVERSAL MODEL
SELECTION

OLIVIER CATONI

ABSTRACT. We build a model selection algorithm which has a mean Kullback
risk upper bounded by the mean risk for the best model applied to half the
sample augmented by an explicit penalty term of order one over the sample
size. This estimator is not a “true” selection rule, but instead an adaptive
convex combination of the models: this mixture approach is inspired by the
context tree weighting method of information theory by Willems, Shtarkov
and Tjalkens [6, 7], which is a “universal” data compression algorithm for
stationary binary sources. Our algorithm is “universal” with respect to the
statistical mean Kullback risk in the sense that it is almost optimal for any
exchangeable sample distribution.

We give an application to the estimation of a probability measure by adap-
tive histograms. We detail a factorised computation of the mixture which
weights M models performing a number of operations of order log(M ), when
the subdivisions underlying the histograms have nested cells.

The end of the paper shows that in the case of a dense family of models, a
true selection rule can be built in a second step. We give an upper bound for
the mean square Hellinger distance of the estimator from the sample distribu-
tion, which tends to zero at the optimal rate, up to an explicit multiplicative
constant, in the case when the square Hellinder distance and the Kullback
divergence are comparable.

1. INTRODUCTION

The purpose of this paper is to adapt some methods and results from information
theory to the statistical estimation of a probability distribution. We will measure
the quality of estimators with respect to the Kullback divergence, and sometimes
also with respect to the Hellinger distance. More precisely we will be interested in
“universal” model selection algorithms: the true sample distribution will only be
supposed to be exchangeable, and we will seek an adaptive way to select the most
efficient among a family of estimators taking their values in a family of models.
The mixture approach consists in mixing together the estimators using appropriate
adaptive weights, instead of actually choosing one. It comes from coding theory,
in which some “double mixture codes” have been proved to have a nearly optimal
redundancy for any stationary source. These codes are called “universal”, because
they do not use any special knowledge about the source. Their design, study and
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implementation has known a remarkable breakthrough with the works of Willems,
Shtarkov and Tjalkens [6, 7] on the “context-tree weighting method”.

Although any coding algorithm performs an implicit estimation of the probability
distribution of the source, applying methods of information theory to statistics
requires some further thinking, since the redundancy criterion of coding theory
does not coincide with the Kullback contrast function (it is a Cesaro mean of
Kullback risks for subsamples of growing sizes). The main result of this paper is
an explicit universal model selection method. We call it the progressive mixture
method, because 1t combines Bayesian estimators based on subsamples of increasing
lengths (at least in its basic implementation, some alternatives of lower algorithmic
complexity will also be mentioned).

If a true selection rule is needed, it is possible to approach the mixture estimator
by a distribution drawn from one of the models in a second step. This gives an
efficient upper bound for the mean square of the Hellinger distance, when the true
sample distribution is in the closure of the family of models.

To illustrate this general approach and show that it can lead to efficient algo-
rithms, we develop the case of the estimation of a probability measure by adaptive
histograms.

To point out that a true selection rule (such as a penalised maximum likelihood
estimator) could not always reach the same performance as our progressive mixture
estimator with the weak assumptions we make, we give a toy counter example in
which the increase in the average risk due to model selection is of order at least
l/ﬁ for any true selection rule, and is of order at most 1/N for the progressive
mixture estimator, where N is the size of the sample. This bears some resemblance
with the well known result from game theory, saying that in general the optimal
strategies are mixed. The reason for this failure of a true model selection is that we
consider situations in which the true sample distribution does not necessarily lies
in the closure of the family of models. This situation is very common in practice in
signal or image analysis, where the models are far to (and need not either) capture
all the complexity of the data.

It is also interesting to note that it is possible to build adaptive estimators for
the mean risk for exchangeable sample distributions. As the analysis of the now
well understood penalised minimum of contrast adaptive estimators is based on
concentration theorems for product measures (see Birgé and Massart [1, 2, 3]), the
mixture approach opens a different line of proofs.

2. A UNIVERSAL MIXTURE ESTIMATOR FOR MODEL SELECTION ACCORDING TO
THE KULLBACK DIVERGENCE

Let (X, B) be a measurable space. Let By be the product sigma algebra on XV.
For each N, let Py be a probability distribution on (XV, By). Let (X;)N¥, = XV
be the canonical process on XV. For any permutation ¢ € Gy of {1,..., N}, let
o X be the exchanged process

((TX)Z':XO(Z'), 2:1,,N

Let us assume that for each N € N, Py is exchangeable. This means that for
any 0 € Sy, any A € By,

Py(XY € A) = Py((eX)Y € A).
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Let us consider a countable family (Q%)meN,NeN of estimators. More precisely,
we assume that for each 2 € XV, QN(.|«}) is a probability measure on (X, B)
and that for each A € B the map 25 — QN (A|zY) is measurable.

We assume also that for each m, there is a dominating measure y,, such that

QN (- &) < pm for any 28 € XN~1. Replacing if necessary fi,, by Z 2_(m+1)um

meN
we will assume in the following that g, = g is independent of m. We will also
dQu (123

assume that there is a measurable version q%(ml |Iév) of di(ml)
I

The model selection problem for the Kullback risk i1s to solve approximately,
knowing the sample X2V, the minimisation problem

ifg\l EpyH(Pn(X1 €| X)), QN (X1 € | X)),
m

where, for any probability measures p and v € M_ﬁ_(DC), H(p,v) is the Kullback
divergence function (also called relative entropy)

log 2dp ifp< v
H(p, 1/) — fx dv ]
+00 otherwise

We will build an approximate mixture solution to this problem. TLet 7@ be a
probability distribution on N, let K < N be a positive integer. We consider the
following estimator:

N Z w(m) ( ]___[ g (Tn |"3§)) gk (z1 | 25)

1 meN n=K+1
M= d_tm) I ahtenlzi)
meN n=K+1
d/l T 2/

Let us remark immediately that this definition is independent of the choice of
the dominating measure p.

Theorem 2.1. Under the previous assumptions

(1) EpyH(Py(X1€-]X9),QF (X1 €-[X7))

1 1
< inf { Epy H(Pn(X1 € | X9), Q5 (X1 € -] X5° 1 :
< jut { B H(PA(X) €100, QE0N €1 X8 + gy Tog
Remark 2.1. We use the supplementary observations X%_I_] to choose between the
estimators QK | which are computed from X2 . Therefore XIJ}7+1 plays the role of a
“test set”.

Remark 2.2. We will see on examples that it is sometimes possible to balance the
two terms of the sum on the right hand side of the previous equation by an appro-
priate choice of K and .

Remark 2.3. Of course, the most interesting case is when Py is a product measure.
Anyhow, the proof requires only that Py should be exchangeable. In practice also,
the support of = will be finite, and we will thus use a finite number of models.
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Proof. Tt is easy to see that
H(Py(X1 €-1X3),QY (X1 €] X7)
= £ = [ togal (ar | XJ) Pl | X1,
where f(X2) is independent of QY. In the same way
H(Py(X1 €-1X3"),Qu(X1 €1 X5) = f(X3)
- [ tog (e 1 X0 Pt | X2
Therefore equation (1) is equivalent to |

(2) - Epyloggy (X1]X3)
L
N_K+1 8a(m)

< inf —Epy loggX (X1 | X5 +
meN
Now, using the fact that —log is a convex function, we see that

— Epylogqy (X1]X7)

M
, N Yoatm) TT e (Xa I X5)ai (X1 1 X59)
m n=K+1
< Ep,1
= N—K-|—1MZ_:K P08 M
- doalm) T am(XalX5)
m n=K+1

We can then use the fact that Py is exchangeable to swap X; and X471 in the
Mth term of the sum. To simplify the notations we will introduce Xy41 = Xj.
We get that

M+1

N Yorm) I ah(Xalxs)

1 n=K+1

N N m
—Epyloggr (X1]X5') < TN_K+1 MZ:K Epy log 5 ﬁ K K
- m(m) gm (Xn | X37)

AN

m n=K+1
1 N+1
_ K K
o 7 ca IS SRS | LR

1 1 MR
< —  _ Ep. Kox | XKy,
= N_K ¥ 1 (log 7T(TTL) EP]V n_zk;-i-l log 9m (X |X2 ))

Eventually, we exchange X, and Xj in the right hand side and get that for any
m €N
1

m(m)

—Epy log ¢ (X1 | X)) < —Epy log g (X1 | X3) + log

1
N-K+1
Taking the infimum in m in the right hand side ends the proof of the theorem. O
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3. DICHOTOMIC PROGRESSIVE MIXTURE ESTIMATORS

The progressive mixture estimator of the previous section has the drawback of
requiring lengthy computations, since N — K + 1 mixtures have to be computed.
This number can be reduced to log,(N — K +1), if we proceed in a dichotomic way:

Let us assume that N — K + 1 = 27, and let us define by backward induction
the following sequence of probability measures on N:

a’(m) = w(m)

K42kt1_1

o (m) T ah(@alad)

k n=K+2* k4
a’(m) =5 K2 + ot (m)

DRI CORN | EEACHEED

m'EN n=K 42k

N[ —

| =

al(m)qm (IK-H |£L‘2 ) al(m)

21D o)y | 25)
m’'eN

ao(m) =

Let us consider the estimator:

iY@ 15) = 5 pen a”(mhim(a1 | 25),
d .
WIClz2) N (] d).

It is easy to show by induction that

(3)  — Epylogag (X1 ]X7)

N1
< rtor (St T1 a5

meN n=K+1

me

. 1 1
< lnf\] <_EP log gp (X1 | X5°) + 2—,108 W) ;
and therefore that

Theorem 3.1. Under the previous assumptions

(4) EpyH(Py(X1€-]X0),Q) (X1 €-[X3)

1 1

< inf { Ep . H(Py(X; € -| XM, 0K (Xx, € -| XX 1 .

< int { P HOPNON €160, QU061 €1 X)) 4 gy ow
4. RANDOMISED PROGRESSIVE MIXTURE ESTIMATORS

Another way to modify the progressive mixture estimator is to randomise the
choice of the number of observations used for model selection. Let us consider
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for some integer r an i.i.d. sample of integers (M;);_; drawn with respect to the

uniform distribution on {K 4+ 1,..., N}. Let us put
M;
.Y m(m) ( II erf(f'?n|f'3§)) g (21 ] 25)
¢ (x| 2d)) = %Z e et i
D D (D ( II antenlef >)
meN n=K+1

dQN (w1 |2}))

It is easy to see that

Theorem 4.1.

(5) EpyH(Pn(X1€-]1X7),QY (X1 €[ X7))

1 1
< inf { Epy H(Pn(X1 € | X9)), QK (X1 € | X5 1 :
< int { P (PN O €1 X), Q00 €1 X + ey 8 1

Various combinations of the randomisation and dichotomic improvements to the
progressive mixture estimator can also easily be imagined.

5. MIXTURE AND PENALISATION: A COUNTER EXAMPLE TO THEIR SIMILARITY

We give this example to show that a true selection rule, which selects a distribu-
tion within one of the models of a family of models, cannot be substituted to the
progressive mixture estimator in theorem 2.1. Some supplementary assumptions
on the structure of the family of models have to be added.

We consider a sample (X{¥) € {0, 1}V of binary variables, and two simple models
containing only one distribution. For any real number A € [0, 1], let By be the
Bernoulli distribution with parameter A: By = A§; 4+ (1 —X)éy. Let us consider two
models, the first one containing only the distribution By ;4 and the second one only
the distribution Bs/4. The best estimators for these two models are obviously the
constant estimators

Q¢ (=1 |25) = Qo(1) = By,
QT (z1]25) = Q1(21) = Byya.

Now let us assume that the true distribution 1is Bl/Z—l/W' The central limit

theorem shows that for N large enough and some positive constant « independent
of N,

1=2

Therefore the maximum likelihood estimator will choose ()1 with a probability at

2log 3
VN’

least equal to a. Moreover H(Bl/Q_l/\/N, Bgys) — H(B1/2—1/\/Na Bia) =
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therefore, with the notations of theorem 2.1, if Q,(z1 | 2Y) is the maximum likeli-
hood estimator

Epy(H(P(X) € ), Qu(X: € -] X))

> inf {EPNH(P(X1e~),QZ(X1€-|X£V))+

2a log3}
= me{o,1} '

VN

This is to be compared with theorem 2.1 applied with 7(0) = #(1) = 1/2 and
K =1, which gives

Epy(H(P(X1 € ),Q7 (X1 € -] X]))

_ log 2
< inf {Ep H(P(X;€),QN(X, €| XN)+ =224,
_mel?o,l}{ P ( ( 1 € ),Qm( 1 € | 2 ))+ N }

The symmetry of the problem shows that any other selection rule between By,
and Bg/4 based on the observations X& would not do better than the maximum
likelihood estimator.

The reason why this “counter example” works is of course that the map By —
inf {H(BA, Bija), H(Ba, 33/4)} is not differentiable at its extremal point A = 1/2,
where it has two non zero directional first derivatives. In other words if a true
selection rule gave an increase in the risk of order 1/N, it would be possible to
estimate A with a precision of order 1/N, which is clearly in contradiction with the
central limit theorem.

6. UNIVERSAL BAYESIAN ESTIMATION OF A BERNOULLI VARIABLE

In this section, we will show that the Bayesian estimate corresponding to an a
priori uniform mixture of the parameter is universal. The technique of the proof
is borrowed from [6] where a more subtle proof is provided for the Krichevsky-
Trofimov estimator. We will use notations analogous to those of section 1, although
here the parameter § will be in the continuous space [0,1]. We consider on [0, 1]
the uniform mixture = equal to the Lebesgue measure. We put

alb!

QN(:::N):/1B®N(33N)d6:/16“(1—6)bd6: —
BT o ¢ o (a+b+1)

N

where a = Z z; and b = N — a. The Bayesian estimator corresponding to 7 is the
i=1

well known Laplace estimator

a b

N N
= —— &z _
Qper[a3) = i) + g

50(131).

In order to study its performance, we will use only the fact that the true dis-
tribution is assumed to be exchangeable. Let us introduce the random variables
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N
= %ZX;C and b= N — a. We have
k=1

N
1
—Epy log QN (X1 | X)) = —~Epy D logQE(Xi | Xii# k,1<i<N)
k=1

> a | a n b | )
TP G bl T ath Patbtl

1 1
= FEp. inf ——1log BN (XM +log (1 4+ ——
Py inf =57 108 By (X7") +log [ 1+ po»

1 1
< inf Ep,1 + —.
velny Y B By(Xy) T N

We have proved that
Theorem 6.1. For any exchangeable distribution Px on {0,1}%,

(6) EpyH(Pv(X1€-]X)),QF(X1 €-[X3))

1
< €€1Ff ]EPNH(PN(Xl €1 X9), Bo(X1 € )+ N

Remark 6.1. 1f we had used a progressive mixture estimator based on the Krichevsky-

C do
Trofimov prior distribution 7(df) = m, we would have got an upper
1log N 1

bound with a penalty equal to o) This is an easy consequence of the

fact that

N N

( : >a < : >b
a+b a+b 1
1 < =log(a+b)+ 1.
8 e gpap S g st

V(1 —86)
(See [6] for a proof.) Therefore in this case of a continuous parameter space the

universal upper bound we can prove for the Bayesian estimator is better than for
the progressive mixture estimator.

Remark 6.2. The Laplace estimator is well known since a long time, so we do not
know whether the result we give here is new or not. The only thing we can say is
that our source of inspiration for this proof was [6].

7. GENERALISATION TO RANDOM VARIABLES TAKING A FINITE NUMBER OF
VALUES

Let us consider now the case when X = {0,---,d}. Let Dy, 6 € [0,1]%+ 376, =
1 be the distribution Dy (i) = 6;,i =0, ... ,d. Let U(df) be the uniform (Lebesgue)
probability measure on the parameter space © = {6 € [0,1]+!,5°.6;, = 1}. We
have now for this uniform prior

loog!
2N DEN (2T (d0 / 0% U (do dordd’
QB 1 / 1 ) H ) ++ad+d)'

and

a; a;

N N
xr xr = =
Qp (21 |22) ag+---+ag+d  N+d
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N
where a; = Z 1(x . For any exchangeable distribution Py on XN we have
| XN
~Epy log QE (X1 1 X)) = —Epy = D QF(Xx | X;, 1 <G < N,j # k)
k=1
—F
Py Z N + d
= Ep,, inf ——1ogD®N(XN) +log [ 1+ 4
— ~“Pn pco N ] 1 N

1 d
< inf Ep, log —— 4 —.
Sl By T

Theorem 7.1. For any exchangeable distribution Py on {0,... d}",
EPNH(PN(Xl € |X§):Qg(X1 € |Xév))
d
< inf Ep H(Pn(X1 € | XY), Dg(X1 € ) + —-
_9126 PN (N( 16 | 2)) 9( 16))+N

8. ESTIMATION BY ADAPTIVE HISTOGRAMS

We consider as in section 2 a measurable space (X, B) and a reference probability
measure g on this space. We assume again that the sample distribution Py on
(XN, BONY is exchangeable.

We let § be a countable family of subdivisions of X. Here we call a subdivision
S of X a partition of X into a finite number of measurable sets I € S such that
u(I) > 0. For any S € 8, any parameter s € ML(S) = Os we consider the
measure on X with density with respect to the reference measure p

(S, 05) @) = Y 9:((11)) 1z € T).

Ies

We consider the estimator Q¥ (1 | #5) with density

dQ¥(z1 € |z .
QRlare 1ol _ s, 1)
I

[T (5. 05) (2 )U(dbs)

Os p=1

| T xs.05)wvn)

S n=2

From the previous section, we see that

N o a(l)+1 1(x1 €1)
qs(-"ﬁl|<’32)—zs K+d(S) p(l)

K
where a( Z (Xn €71) and d(S) =|S| — 1, and that

: 1 d(s
_EPN log QSK(Xl |X2K) S 9<12£< EPN log X(S 65)(X1) + 5.\,)
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Consider now the progressive mixture estimator based on (¢X)scs and on some
prior probability distribution @ on 8:

Yoa(S) I af (@nlai)as (21 ]2%)

N
1 _
Ny, Ny_ SeS n=K+1
qw<xl|x2)_N_[\’+11MZ_:K M B B
- Yous) I af (zalaf)
Ses n=K+1
We have proved in section 2 that
— Epy log g3’ (X1 | X3')
. . 1 d(s) 1 1
< inf f Fp,l 1
= §es {e;?es P08 5 0) (X)) T K T N—K+1 8 W(S)}

If we want to balance the two penalty terms, we can take 7(S) = m%je_ﬁd(s).
This gives a penalty of

AS) | _BdS) |, logZ(B)
K N-K+1 N-K+41
Proposition 8.1. If we take § = % we get
— Epy log gy (X1]XY)
2d(s) + 2620
<o, P o8 g 04T

Remark 8.1. The same result is of course also true for the dichotomic and the
randomised progressive mixture estimators.

9. BINARY TREES OF HISTOGRAMS

We will restrict ourselves here to families of dichotomic subdivisions of X, leading
to fast algorithms. In these cases, some progressive mixture estimators can be
computed efficiently by adapting the context tree weighting algorithm of Willems,
Shtarkov and Tjalkens [6, 7].

We will not exactly base the estimation on ¢ (z1 | #), but on the approximation

|s
~K K a(l e ®=1 )
ds (mlle ) = ;%1(1‘1 € [)

S| _ sl
= (14 225 ) e G 1)

< g5 (w1 | 23).

The advantage of this approximation will be seen in the computation of the mix-
tures.

In a first step we have to explain how to use the & instead of the ¢X and to
prove that we do not loose much by doing this. Let us first define the randomised
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progressive mixture based on G&:

M;
L YorS) I @ (wnl2)dé (2] 25)
~N Ny _ Se8 n=K+1
QW($1|$2)_;; M; )
T 2™ [ @@l
Se8 n=K+1
where (M;)1<i<r is an i.i.d sample from the uniform distribution on {K+1,... N},

independent of everything else. To get a statistical estimator, we have to normalise
@Y. Therefore our estimator will be

o) =¥ o)
As for any S € 8

Ll utde))

g8 (z1]25) < g (21 ] 2y),
we have that
[ G ladutan < 1,
reX
therefore
E —log @y (X1] X3') < F —logdy (X1| X3).
Replacing ¢¥ by G5 in the proof of section 2, we see moreover that

L
N_K+1 879

—Flog gy (X1 | X3) < inf —Flogds (X1 | X5) +
e K K
= élelfs Elogqs (X1|X5')

d(S) +1 d(S) +1 1 !
tRZ1 _log<1+ k=1 )t ¥or+1°%79

o 1 d(s)
< inf f Fl
- g‘IEIS 951365 ©8 X(S, 95)(X1) + K

1 /d(S)+1\? 1 1
+§< K—1 > t N TR ey

Let us now describe the family 8§ and the prior distribution #. Let us assume
for this purpose that we have divided X into a binary tree of nested cells {I
s € {0,1}*}, where we use the notation {0,1}* = jz"g{o, 1}, The cells are thus
indexed by the set of finite binary strings, which we will call words in the future.
We assume that

e I =X, where ) is the empty string,
o for any word s, I ;o U Iy1 = I, and I,o N I = 0.

For example, in the case when X = [0, 1] is the unit interval, we can choose

I(s) I(s)
I = | s(k)27%, 27100 4 3 s(k)27b |
k=1

k=1

where {(s) is the length of the string s.
We recall that a complete prefix code S € {0,1}* is a finite set of finite binary
strings such that:
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e if 5,¢ are in S, then for some k < (I(s) A l(t)) we have s(k) # t(k) (no word
in S is the prefix of another word).
e S is maximal for inclusion.

A complete prefix code can also be seen as a complete binary tree. To see this,
it suffices to arrange {0,1}* into a binary tree, by considering that the two sons
of s are s0 and sl. Then a prefix code is made of the leaves of a finite subtree of
the infinite tree {0, 1}* and a complete prefix code is made of the leaves of a finite
complete subtree of {0,1}* (one in which any interior node has two sons).

Tt is easy to see that for each complete prefix code S, {I;, s € S} is a subdivision
of X. We will write that S; < Ss if each word in S2 has a prefix in S1, or equiv-
alently if the subdivision corresponding to Ss is a refinement of the subdivision
corresponding to Si.

Now let @ be the set of all complete prefix codes and consider for some S C @
the family of subdivisions

§={See|s<S}

For some survival probability p €]0, 1[, we consider the a priori distribution on 8§
7(S) = plS1=1(1 = p)ISI=ISnSI g e 8.

This 1s the distribution of the genealogy tree of a branching process where each
particle either gives birth to two sons with probability p on the next generation,
or dies without heirs with probability 1 — p, except when it is located on S in the
genealogy, in which case it dies without posterity with probability one.

We have proved the following theorem:

Theorem 9.1. With the previous assumptions and notations, the modified ran-
domised progressive mizture estimator g~ satisfies

— Elog gy (X1|X3)

1 d(S) 1 /d(S)+1\> d(S)+1 1
< Inf, il Ploe ey TR 5( =1 ) "WN=k+1°0=p)

We are now going to see how to compute g (1‘1 |.’I’2 ). We have to compute 2r
mixtures of the type

wir(8) =Y w(S) [ @5 (enles)

Se8 n=K+1
1| +1 "
_Zw(Sef‘l H([x—l )> ,
Ses8

where

bI)= Y 1apel).

E=K+1

We see now the advantage of using ¢5: in the product [I7cs, the factors are
functions of I only (and not of I and S). Thus it will be possible to factorise the
computation of w(8).
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Let T(S) be the tree corresponding to S, i.e the set of all the prefixes of the
words of S, i.e. the finite sigma algebra generated by the subdivision S. On T(S5)
we define the backward recursion

b1, _

() (J—L(;_If):(i)) ( )e_(M_K)/(K_l), ifses,
wls) = (I, _
(=) (i) e MENED  pus)u(al), i g S

Then it is easy to check that

Proposition 9.1.
w(@) = w(8),
where () stands for the empty string.

Hence to compute w(§), we need to perform a number of operations of order
|T(S)| = 2|S] — 1. This is to be compared with the number of models |§]. Tt is
given by the following backward recursion on T'(S):

)L ifses,
n(s) = L+ n(s0)n(sl), ifsgs,
n(0) = 81,

In the case when S is the complete tree of depth 6 (for example when X = [0, 1]
and the cells are the dyadic intervals, the complete tree of depth é defines the
uniform subdivision of [0, 1[ of step size 27%), we see easily that n(s) = f(I(s)),
where f(6) = 1 and f(k — 1) = f(k)? + 1. Therefore we have f(k —1) > f(k)? and
flk—=1)+a < (f(k)+ a)? with a = %(1 + \/5) Thus in this case
227 < I81< (24 0)” T — 0

In conclusion, using the modified randomised progressive mixture estimator g, we
perform almost as well as the best of more than 22°"" models in a time of order
§(r2% + N) where 7 is the number of trials for the randomised length of the second
subsample. The justification of this complexity estimation is the following: when
you add or you modify either an observation z;, K < i < N or the point 1 where
you want to compute ¢(z; | z2'), you have to update the computations for b(I,) and
w(s) in § nested cells. Now you will use at most N — K +1 ~ N observations, which
you will introduce progressively in the computations, and you have to consider the
case when z; falls in each of the 2% finer cells, and this for the r random lengths
of the second subsample, this accounts for the r2° factor. If the cells are “well
balanced” a reasonable choice is to take 2% of order N, and if moreover r is kept
bounded, this results in a complexity in N of order Nlog N.

Remark 9.1. All this section could be generalised to more general trees. More
flexibility in the choice of 7 is also possible. We refer for comparison to the gener-
alisations of the context tree weighting method in [7].

10. MODEL SELECTION FROM A DENSE FAMILY OF MODELS

Using the same notations as in section 2, let us assume now that QN (-| XV) €
M,, (a set of probability distributions forming a “model” indexed by m). Let us
assume that Py is a product measure, Py = P®N. This we do for simplicity,
straightforward generalisations to the case when P is only exchangeable are left to
the reader. We assume that
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) infM H(P, pt;) = 0. Thus we assume that the sample distribution P is
M,y € My,

in the closure of the family of models (M, )men with respect to the Kullback
distance. (In other words the family of models is assumed to be dense in the
set of all possible sample distributions.)

o E(H(P,QN(.|XN)) < inf inf H(P,pn)+ @, for some family ¢(m) of

EN pm €M
positive weights. We make this assumption to give a more suggestive result.
It is easily seen that ((]:fn) could be replaced by an arbitrary function ¢(m, N)

throughout this section.

Then we have seen that

1 1
E(H(P,QN(X, € - | XN)) < inf inf H(P, pu, c(m) | .
( (’Qﬂ'( 16 | 2))_171711 ,umléle (Hu )+ K +N—IX’—|-1 ng(m)

Let h be the Hellinger distance between probability measures,

hw):ﬁ/w@—x@?.

It is well known that 2h%(u,v) < H(p,v) and that, h being a “true” distance,

W) < 2020, €) + H(E,0).
Let us select m(X2) and fin(X1 € -| X&) € My, by minimising

. m
where y(m) is a family of positive weights (here again we could use an arbitrary
positive function y(m, N)). We let also the reader figure out by himself the obvious
modifications required in the case when the infimum is not reached in the previous
equation.

We have that for any pu,, € M,,

Epy <h2(P, (X1 €| X)) + z%wv)))

< 2ER*(P,Q7 (X1 € | X))

F2ERAQY (X1 € | X o (X1 € | X)) 4 22L2ED)
< 2P, QY (X: € | X1) + 2ERYQY (X1 € | X2, o) + 2207
< 6P, QY (X: € | X1) + 40P, ) + 2207

< 3EH(P,QN (X1 € | X)) + 4h*(P, ptm) + 2_7(];”)

(m)
K

4 92(m)

(&4
< 5H(P, jim ]
< SH(P, pim) + 3 N_K+1 ®a(m) N

_+_

We have proved that

Theorem 10.1. The rate of approzimation of P by the adaptive estimator [is

according to the mean square of the Hellinger distance is upper bounded by
4o2m)

w(m) N

T{l)

: 3
E(R2(P, i) <  inf  5H(P, 3t ]
( (’“'))—mew,hnmemm (P ) +3=p=+ e 108
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Remark 10.1. This theorem shows that in many cases the rate of decrease of
E(h%(P, ji)) will be optimal. This will be the case when H (P, p) is of the same
order as h?(P, ji,,) where the infimum in m is reached, when K /(N — K) is chosen
of order 1, when y(m) is chosen of order at most ¢(m) and when > e=*(") < 400,

so that it is possible to choose log W(in) of order ¢(m).

Remark 10.2. A choice of y(m) = 0 is possible, but in practice, we will like to select
a model as simple as possible, and therefore we will prefer a choice of y(m) increasing
with the dimension of the model as fast as possible. Usually this dimension is related
to ¢(m), and we will choose y(m) of order ¢(m).

11. CoNCLUSION

The progressive mixture estimator is interesting from the theoretical point of
view, since it proves that it is always possible to perform almost as well as the
best of a countable family of estimators with a loss of performance only due to
the fact of splitting the sample in two and due to the presence of an extra term
N%KH log 7r(_1mj’ where 7 is an arbitrary probability distribution. It is remarkable
that this could be achieved without any special assumption on the estimators or on
the true sample distribution.

It also can be a fast practical algorithm in the case when the computation of
the mixtures factorises well. We have treated here the case of adaptive histograms.
This may suggest already a variety of applications, since we worked with a broad
definition of histograms. We are planning to give further applications and gener-
alisations of the mixture approach to regression and classification problems in the
near future.
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