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Abstract

Let X be a random variable taking values in a function space

F , and let Y be a discrete random label with values 0 and

1. We investigate asymptotic properties of the moving win-

dow classification rule based on independent copies of the

pair (X,Y ). Contrary to the finite dimensional case, it is

shown that the moving window classifier is not universally

consistent in the sense that its probability of error may not

converge to the Bayes risk for some distributions of (X,Y ).
Sufficient conditions both on the space F and the distribu-

tion of X are then given to ensure consistency.

Index Terms — Classification, kernel rule, consistency, uni-

versal consistency, metric entropy.
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1 Introduction

In many experiments, scientists and practitioners often collect samples of
curves and other functional observations. For instance, curves arise natu-
rally as observations in the investigation of growth, in climate analysis, in
food industry or in speech recognition; Ramsay and Silverman [24] discuss
other examples. The aim of the present paper is to investigate whether the
classical nonparametric classification rule based on kernel (as discussed, for
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example, in Devroye, Györfi and Lugosi [8]) can be extended to classify func-
tions.

Classical classification deals with predicting the unknown nature Y , called a
label, of an observation X with values in R

d (see Boucheron, Bousquet and
Lugosi [5] for a recent survey). Both X and Y are assumed to be random,
and the distribution of (X, Y ) just describes the frequency of encountering
particular pairs in practice. We require for simplicity that the label only takes
two values, say 0 and 1. The statistician creates a classifier g : R

d → {0, 1}
which represents her guess of the label of X. An error occurs if g(X) 6= Y ,
and the probability of error for a particular classifier g is

L(g) = P{g(X) 6= Y } .

It is easily seen that the Bayes rule

g∗(x) =

{

0 if P{Y = 0|X = x} ≥ P{Y = 1|X = x}
1 otherwise,

(1.1)

is the optimal decision, in the sense that, for any decision function g : R
d →

{0, 1},
P{g∗(X) 6= Y } ≤ P{g(X) 6= Y } .

Unfortunately, the Bayes rule depends on the distribution of (X, Y ), which is
unknown to the statistician. The problem is thus to construct a reasonable
classifier gn based on independent observations (X1, Y1), . . . , (Xn, Yn) with
the same distribution as (X, Y ). Among the various ways to define such
classifiers, one of the most simple and popular is probably the moving window

rule given by

gn(x) =

{

0 if
∑n

i=1 1{Yi=0,Xi∈Bx,hn} ≥
∑n

i=1 1{Yi=1,Xi∈Bx,hn}

1 otherwise,
(1.2)

where hn is a (strictly) positive real number, depending only on n and called
the smoothing factor, and Bx,hn denotes the closed ball of radius hn centered
at x. It is possible to make the decision even smoother using a kernel K (that
is, a nonnegative and monotone function decreasing along rays starting from
the origin) by giving more weights to closer points than to more distant ones,
deciding 0 if

∑n
i=1 1{Yi=0}K

(

(x−Xi)/hn

)

≥
∑n

i=1 1{Yi=1}K
(

(x−Xi)/hn

)

and
1 otherwise, but that will not concern us here. Kernel-based rules are derived
from the kernel estimate in density estimation originally studied by Akaike
[2], Rosenblatt [26], and Parzen [22]; and in regression estimation, introduced
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by Nadaraya [20], [21], and Watson [30]. For particular choices of K, statisti-
cal analyses of rules of this sort and/or the corresponding regression function
estimates have been studied by many authors. For a complete and updated
list of references, we refer the reader to the monograph by Devroye, Györfi
and Lugosi [8], Chapter 10. Now, if we are given any classification rule gn

based on the training data (X1, Y1), . . . , (Xn, Yn), the best we can expect
from the classification function gn is to achieve the Bayes error probability
L∗ = L(g∗). Generally, we cannot hope to obtain a function that exactly
achieves the Bayes error probability, and we rather require that the error
probability

Ln = P
{

gn(X) 6= Y |(X1, Y1), . . . , (Xn, Yn)
}

gets arbitrarily close to L∗ with large probability. More precisely, a classifi-
cation rule gn is called consistent if

ELn = P{gn(X) 6= Y } → L∗ as n → ∞ ,

and strongly consistent if

lim
n→∞

Ln = L∗ with probability one.

A decision rule can be consistent for a certain class of distributions of (X, Y ),
but may not be consistent for others. On the other hand, it is clearly desir-
able to have a rule that gives good performance for all distributions. With
this respect, a decision rule is called universally (strongly) consistent if it
is (strongly) consistent for any distribution of the pair (X, Y ). When X is
R

d-valued, it is known from Devroye and Krzyżak [9] that the classical con-
ditions hn → 0 and nhd

n → ∞ as n → ∞ ensure that the moving window
rule (1.2) is universally strongly consistent.

In this paper, we wish to investigate consistency properties of the moving
window rule (1.2) in the setting of random functions, that is when X takes
values in a metric space (F , ρ) instead of R

d. Clearly, in this more general
framework, the moving window rule is still defined as in (1.2) – just replace
the ball of R

d by the ball of (F , ρ) – and the optimal decision remains the
Bayes one g∗ : F → {0, 1} as in (1.1). Probably due to the difficulty of the
problem, and despite nearly unlimited applications, the theoretical literature
on regression and classification in infinite dimensional spaces is relatively re-
cent. Key references on this topic are Rice and Silverman [25], Kneip and
Gasser [15], Kulkarni and Posner [17], Ramsay and Silverman [24], Bosq [4],
Ferraty and Vieu [11], [12], [13], Diabo-Niang and Rhomari [10], Hall, Poskitt
and Presnell [14], Abraham, Cornillon, Matzner-Løber and Molinari [1], and

3



Antoniadis and Sapatinas [3]. We also mention that Cover and Hart [7] con-
sider classification of Banach space valued elements as well, but they do not
establish consistency.

As a first important contribution, we show in Section 2 that the universal
consistency result valid in the finite dimensional case breaks down as soon
as X is allowed to take values in a space of functions. More precisely, we are
able to exhibit a normed function space and a distribution of (X, Y ) such
that the moving window rule fails to be consistent. This negative finding
makes it legitimate to put some restrictions both on the functional space and
the distribution of X in order to obtain the desired consistency properties.
Sufficient conditions of this sort are given in Section 3 (Theorem 3.1 deals
with consistency whereas Theorem 3.2 with strong consistency) along with
examples of applications. These conditions involve both the support of the
distribution of X and the way this distribution locally spreads out. For the
sake of clarity, proofs are gathered in Section 4.

2 Non-universal consistency of the moving

window rule

Let (hn)n≥1 be a given sequence of smoothing factors such that hn → 0 as
n → ∞. Our purpose in this section is to show that there exists a normed
function space

(

F , ‖.‖
)

, a random variable X taking values in this space
and a distribution of (X, Y ) such that the moving window rule (1.2) fails
to be consistent. For any pair (X, Y ), we denote by η(x) the conditional
probability that Y is 1 given X = x, i.e,

η(x) = P{Y = 1|X = x} = E[Y |X = x] .

Good candidates may be designed as follows.

Preliminaries Define the space
(

F , ‖.‖
)

as the space of functions from
]0, 1] to [0, 1] endowed with the supremum norm ‖.‖ = ‖.‖∞, and let X be
a random variable (to be specified later) taking values in F . Choose finally
a label Y which is 1 with probability one, and thus η(x) = 1. Following the
lines of the proof of Theorem 2.2 in Devroye, Györfi and Lugosi [8] (Chapter
2, page 16) it is easily seen that

P{gn(X) 6= Y } − L∗ = E
[

|2η(X) − 1|1{gn(X)6=g∗(X)}

]

= E
[

1{gn(X)6=g∗(X)}

]

,
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where the last equality follows from our choice of η. We emphasize that gn

predicts the label 0 when there are no data falling around x, i.e., setting
N(x) =

∑n
i=1 1{Xi∈Bx,hn}, when N(x) = 0. When x belongs to R

d, the
conditions hn → 0 and nhd

n → ∞ as n → ∞ ensure that the misspecification
when N(x) = 0 is not crucial for consistency (see Devroye and Krzyżak [9]).
The remainder of the paragraph shows that things are different when x is a
function. Observe first that

1{gn(X)6=g∗(X)} ≥ 1{g∗(X)=1,gn(X)=0}

≥ 1{η(X)>1/2,N(X)=0}

= 1{N(X)=0}

since η(X) = 1. Therefore, we are led to

P{gn(X) 6= Y } − L∗ ≥ E
[

1{N(X)=0}

]

= E
[

E
[

1{N(X)=0}|X
]

]

.

Clearly, the distribution of N(X) given X is binomial Bin(n, PX), with

PX = P
{

‖X ′ − X‖ ≤ hn|X
}

,

where X ′ is an independent copy of X. It follows that

P{gn(X) 6= Y } − L∗ ≥ E
[

(1 − PX)n
]

≥ E[1 − nPX ]

= 1 − nP
{

‖X ′ − X‖ ≤ hn

}

.

Having disposed of this preliminary step, we propose now to prove the exis-
tence of a F -valued random variable X such that nP

{

‖X −X ′‖ ≤ hn

}

goes
to zero as n grows.

Example 1 Take U0, U2, U3, . . . to be an infinite sequence of independent
random variables uniformly distributed on [0, 1] and let X be the random
function from ]0, 1] to [0, 1] constructed as follows: for t = 2−i, i = 0, 1, 2, . . .,
set X(t) = X(2−i) = Ui, and for t ∈ ]2−(i+1), 2−i[, define X(t) by linear
interpolation. We thus obtain a continuous random function X which is
linear on each interval [2−(i+1), 2−i]. Denote by X ′ an independent copy of X
derived from U ′

0, U
′
2, U

′
3, . . . Attention shows that, with probability one, the

following equality holds:

‖X − X ′‖ = sup
i≥0

|Ui − U ′
i | = 1 .

5



Therefore, for all n large enough,

P{gn(X) 6= Y } − L∗ ≥ 1 ,

what shows that the moving window rule cannot be consistent for the con-
sidered distribution of (X, Y ).

Note that the same result holds if U0, U2, . . . are chosen independently with
a standard Gaussian distribution. In this case, X is a continuous Gaussian
process. One can argue that our example is rather pathological, as the dis-
tance between two random functions X and X ′ is almost surely equal to one.
Let us show that things can be slightly modified to avoid this inconvenience.

Example 2 Construct first, for each integer k ≥ 1, a random function
Xk as above with the Ui’s uniformly distributed on [0, k−1], and denote by
(X ′

k)k≥1 an independent copy of the sequence (Xk)k≥1. A trivial verification
shows that, with probability one, for k, k′ ≥ 1,

‖Xk − X ′
k′‖ = max{k−1, k′ −1} .

Second, denote by K a discrete random variable satisfying P{K = k} =
wk, where (wk)k≥1 is a sequence of positive weights adding to one (to be
specified later). Define the conditional distribution of X given {K = k} as
the distribution of Xk and denote by X ′ an independent copy of X associated
with K ′ (independent of K). Then

P
{

‖X − X ′‖ ≤ hn

}

= E
[

P
{

‖X − X ′‖ ≤ hn|K, K ′
}

]

=
∑

k≥1

∑

k′≥1

wk wk′P
{

‖X − X ′‖ ≤ hn|K = k, K ′ = k′
}

=
∑

k≥1

∑

k′≥1

wk wk′P
{

‖Xk − X ′
k′‖ ≤ hn

}

=
∑

k≥h−1
n

∑

k′≥h−1
n

wk wk′

=
(

∑

k≥h−1
n

wk

)2

.

Now, it is a simple exercise to prove that for any sequence of smoothing
factors (hn)n≥1 verifying hn → 0 as n → ∞, one can find a sequence of
weights (wk)k≥1 such that

n
(

∑

k≥h−1
n

wk

)2

→ 0 as n → ∞ .
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Therefore, we conclude that

lim inf
n→∞

P{gn(X) 6= Y } − L∗ ≥ 1 .

Hence the moving window rule is not universally consistent, whatever the
choice of the sequence (hn)n≥1.

3 Consistent classification in function spaces

3.1 Notation and assumptions

The main message of Section 2 is that we have to put restrictions both on the
space F and/or the distribution of X to achieve consistency of the moving
window rule (1.2). This will be the purpose of this section.

Let us first introduce the abstract mathematical model. Let X be a random
variable taking values in a metric space (F , ρ) and let Y be a random label
with values 0 and 1. The distribution of the pair (X, Y ) is completely speci-
fied by µ, the probability measure of X and by η, the regression function of
Y on X. That is, for any Borel-measurable set A ⊂ F ,

µ(A) = P{X ∈ A}

and, for any x ∈ F , η(x) = P{Y = 1|X = x} . Given independent copies
(X1, Y1), . . . , (Xn, Yn) of (X, Y ), the goal is to classify a new random element
from the same distribution µ, independent of the training data, using the
moving window rule. Let us now recall the important and well-known notions
of covering numbers and metric entropy which characterize the massiveness
of a set. Following Kolmogorov and Tihomirov [16], these quantities have
been extensively studied and used in various applications. Denote by Sx,ε

the open ball of radius ε about a point x ∈ F .

Definition 3.1 Let G be a subset of the metric space (F , ρ). The ε-covering
number N (ε)

(

= N (ε,G, ρ)
)

is defined as the smallest number of open balls

of radius ε that cover the set G. That is

N (ε) = inf
{

k ≥ 1 : ∃x1, . . . , xk ∈ F with G ⊂
k

⋃

i=1

Sxi,ε

}

.

The logarithm of the ε-covering number is often referred to as the metric

entropy or ε-entropy. A set G ⊂ F is said to be totally bounded if N (ε) < ∞
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for all ε > 0. In particular, every relatively compact set is totally bounded
and all totally bounded sets are bounded.

Our first basic assumption in the present paper is that there exists a sequence
(Fk)k≥1 of totally bounded subsets of F such that

Fk ⊂ Fk+1 for all k ≥ 1 and µ
(

⋃

k≥1

Fk

)

= 1 (H1) .

Various examples will be discussed below. It is worth pointing out that this
condition is always true whenever (F , ρ) is a separable metric space. Note
also that a similar requirement is imposed by Kulkarni and Posner [17] who
study the problem of nearest neighbor estimation under arbitrary sampling
in a general separable metric space.

Our second assumption asks that the following differentiation result holds:

lim
h→0

1

µ(Bx,h)

∫

Bx,h

η dµ = η(x) in µ-probability, (H2)

which means that for every ε > 0,

lim
h→0

µ
{

x ∈ F :
∣

∣

∣

1

µ(Bx,h)

∫

Bx,h

η dµ − η(x)
∣

∣

∣
> ε

}

= 0 .

If F is a finite dimensional vector space, this differentiation theorem turns to
be true. The original version goes back to H. Lebesgue (Rudin [27], Chapter
8). There have been several attempts to generalize this kind of results to
general metric spaces (see Mattila [18], Preiss and Tiser [23], Tiser [28] and
the references therein for examples, counterexamples and discussions). The
general finding here is that equality (H2) holds in typically infinite dimen-
sional spaces if we ask conditions both on the structure of the space F (such
as to be an Hilbert) and the measure µ (such as to be Gaussian) – see the
examples below.

We draw attention on the fact that condition (H2) holds as soon as the
regression function η is µ-a.e. continuous. Note, from a statistical point
of view, that assuming the continuity of η is far from being unreasonable.
Roughly speaking, it just means in our classification context that two nearby
curves give raise to the same label. This is indeed a classical assumption
which is required by many authors. However, in order to get the most gen-
eral results, we will work under the weaker condition (H2).

Before we present our consistency results, we illustrate the generality of the
approach by working out several examples for different classes.
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3.2 Examples

• As a first example, just take F = R
d endowed with any norm ‖.‖. In

this case, condition (H1) is obviously true and (H2) holds according to the
classical differentiation theorem (Rudin [27], Chapter 8).

• Consider now the less trivial situation where the regression function η is
µ-a.e. continuous – so that (H2) is superfluous – and where the random
elements to be classified are known to be bounded and Hölder functions
of some order α > 0 defined on a bounded, convex subset Ξ of R

d with
nonempty interior. Note that the standard Brownian paths on [0, 1] satisfy
this condition with α > 1/2, and that in the important case where X is a
Gaussian process, the Hölder parameter α may be estimated using an Hölder
property of the covariance function of X, see Ciesielski [6]. The natural balls

Fk = {all continuous functions f : Ξ → R with ‖f‖∞ ≤ k}

are not totally bounded in F endowed with the supremum norm ‖.‖∞. How-
ever, a slight change in the definition of the balls leads to a tractable model.
That is, take

F = {all bounded continuous functions f : Ξ → R}

and, for each k ≥ 1,

Fk = {all continuous functions f : Ξ → R with ‖f‖α ≤ k}

with

‖f‖α = sup
t

∣

∣f(t)
∣

∣ + sup
s6=t

∣

∣f(s) − f(t)
∣

∣

‖s − t‖α
,

where the suprema are taken over all points in the interior of Ξ and ‖.‖
denotes the norm on R

d. Bounds on the metric entropy of the classes Fk

with respect to the supremum norm were among the first known after the
introduction of covering numbers. In the present context, it can be shown
(see, for example, van der Vaart and Wellner [29], Chapter 2.7) that there
exists a constant A depending only on α, d, k and Ξ such that

logN
(

ε,Fk, ‖.‖∞
)

≤ A
(1

ε

)d/α

for every ε > 0.

• Now, if we do not suppose that the regression function η is µ-a.e. contin-
uous, then we have to ask a bit more both on the underlying space F and
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the measure µ to ensure that assumption (H2) holds. Assume for example
that F is a Hilbert space and that µ is a centered Gaussian measure with
the following spectral representation of its covariance operator:

Rx =
∑

i≥1

ci(x, ei)ei ,

where (., .) is the scalar product and (ei)i≥1 is an orthonormal system in F .
If the sequence (ci)i≥1 satisfies

0 <
ci+1

ci
≤ q, i ≥ 1, (3.1)

where q < 1, then (H2) holds (Preiss and Tiser [23]). As an illustration,
keep F and the Fk’s defined as in the previous example, and still assume
that µ(∪k≥1Fk) = 1. Let Q be a probability measure on Ξ. Consider the
L2(Q) norm defined by

‖f‖2
2,Q =

∫

|f |2 dQ

and the Hilbert space
(

F , ‖.‖2,Q

)

. Then it can be shown (van der Vaart and
Wellner [29], Chapter 2.7) that there exists a constant B, depending only on
α, d, k and Ξ such that

logN
(

ε,Fk, ‖.‖2,Q

)

≤ B
(1

ε

)d/α

for every ε > 0. Thus, any Gaussian measure whose covariance operator
satisfies requirement (3.1) above and meeting the condition µ(∪k≥1Fk) = 1
can be dealt with the tools presented in the present paper.

3.3 Results

Following the notation of the introduction for the finite dimensional case, we
let L∗ and Ln be the probability of error for the Bayes rule and the moving
window rule, respectively. In this paragraph, we establish consistency (The-
orem 3.1) and strong consistency (Theorem 3.2) of the moving window rule
gn under assumptions (H1), (H2) and general conditions on the smoothing
factor hn. The notation Gc stands for the complement of any subset G in F .
For simplicity, the dependence of hn on n is always understood and we write
Nk(ε) instead of N (ε,Fk, ρ).

Theorem 3.1 [consistency] Assume that (H1) and (H2) hold. If h → 0
and, for every k ≥ 1, Nk(h/2)/n → 0 as n → ∞, then

lim
n→∞

ELn = L∗ .
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Theorem 3.2 [strong consistency] Assume that (H1) and (H2) hold.

Let (kn)n≥1 be an increasing sequence of positive integers such that

∑

n≥1

µ(F c
kn

) < ∞ .

If h → 0 and
n

(log n)N 2
kn

(h/2)
→ ∞ as n → ∞ ,

then

lim
n→∞

Ln = L∗ with probability one.

Remark 1 Practical applications exceed the scope of this paper. However,
the applied statistician should be aware of the following two points.

First, for a particular n, asymptotic results provide little guidance in the
selection of h. On the other hand, selecting the wrong value of h may lead to
catastrophic error rates – in fact, the crux of every nonparametric estimation
problem is the choice of an appropriate smoothing factor. The question of
how to select automatically and optimally a data-dependent smoothing fac-
tor h will be addressed in a future work. Note however that one can always
find a sequence of smoothing factors satisfying the conditions of Theorem 3.1
and Theorem 3.2.

Second, in practice, the random elements are often observed at discrete sam-
pling times only (deterministic or random) and are possibly contaminated
with measurement errors. The challenge then is to explore properties of clas-
sifiers based on estimated functions rather than on true (but unobserved)
functions.

4 Proofs

4.1 Preliminary results

Define

ηn(x) =

∑n
i=1 Yi1{Xi∈Bx,h}

nµ(Bx,h)
,

and observe that the decision rule can be written as

gn(x) =

{

0 if
Pn

i=1
Yi1{Xi∈Bx,h}

nµ(Bx,h)
≤

Pn
i=1

(1−Yi)1{Xi∈Bx,h}

nµ(Bx,h)

1 otherwise.
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Thus, by Theorem 2.3 in Devroye, Györfi and Lugosi [8] (Chapter 2, page
17) – whose extension to the infinite dimensional setting is straightforward
– Theorem 3.1 will be demonstrated if we show that

E

[
∫

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

]

→ 0 as n → ∞

and Theorem 3.2 if we prove that
∫

∣

∣η(x) − ηn(x)
∣

∣µ(dx) → 0 with probability one as n → ∞ .

Proofs of Theorem 3.1 and Theorem 3.2 will strongly rely on the follow-
ing three lemmas. Proof of Lemma 4.1 is a straightforward consequence of
assumption (H2) and the Lebesgue dominated convergence theorem.

Lemma 4.1 Assume that (H2) holds. If h → 0, then

∫

∣

∣η(x) − Eηn(x)
∣

∣µ(dx) =

∫
∣

∣

∣

∣

η(x) −

∫

Bx,h
η(t)µ(dt)

µ(Bx,h)

∣

∣

∣

∣

µ(dx) → 0

as n → ∞.

Lemma 4.2 Let k be a fixed positive integer. Then, for every h > 0,
∫

Fk

1

µ(Bx,h)
µ(dx) ≤ Nk

(h

2

)

.

Proof Since, by assumption, Fk is totally bounded, there exist a1, . . . , aNk(h/2)

elements of F such that

Fk ⊂

Nk(h/2)
⋃

j=1

Baj ,h/2 .

Therefore

∫

Fk

1

µ(Bx,h)
µ(dx) ≤

Nk(h/2)
∑

j=1

∫

Baj ,h/2

1

µ(Bx,h)
µ(dx) .

Then x ∈ Baj ,h/2 implies Baj ,h/2 ⊂ Bx,h and thus

∫

Fk

1

µ(Bx,h)
µ(dx) ≤

Nk(h/2)
∑

j=1

∫

Baj,h/2

1

µ(Baj ,h/2)
µ(dx) = Nk

(h

2

)

.

�
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Lemma 4.3 Let k be a fixed positive integer. Then, for all n ≥ 1,

E

[
∫

Fk

∣

∣ηn(x) − Eηn(x)
∣

∣µ(dx)

]

≤

(

1

n
Nk

(h

2

)

)1/2

.

Proof According to Devroye, Györfi and Lugosi [8] (Chapter 10, page 157)
one has, for every x ∈ F and n ≥ 1:

E
[

∣

∣ηn(x) − Eηn(x)
∣

∣

]

≤
1

√

nµ(Bx,h)
.

Consequently,

E

[
∫

Fk

∣

∣ηn(x) − Eηn(x)
∣

∣µ(dx)

]

≤

∫

Fk

1
√

nµ(Bx,h)
µ(dx)

≤

(
∫

Fk

1

nµ(Bx,h)
µ(dx)

)1/2

(by Jensen’s inequality)

≤

(

1

n
Nk

(h

2

)

)1/2

(by Lemma 4.2).

�

4.2 Proof of Theorem 3.1

We have, for every k ≥ 1,

E

[
∫

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

]

= E

[
∫

Fk

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

]

+ E

[
∫

Fc
k

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

]

≤

∫

Fk

∣

∣η(x) − Eηn(x)
∣

∣µ(dx) + E

[
∫

Fk

∣

∣ηn(x) − Eηn(x)
∣

∣µ(dx)

]

+ 2µ(F c
k) ,

where in the last inequality we used the fact that η(x) ≤ 1 and Eηn(x) ≤ 1
for every x ∈ F and n ≥ 1. As a consequence, using Lemma 4.3,

E

[
∫

∣

∣η(x)−ηn(x)
∣

∣µ(dx)

]

≤

∫

∣

∣η(x)−Eηn(x)
∣

∣µ(dx)+

(

1

n
Nk

(h

2

)

)1/2

+2µ(F c
k) .

13



Therefore, according to Lemma 4.1 and the assumptions on h, for every
k ≥ 1,

lim sup
n→∞

E

[
∫

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

]

≤ 2µ(F c
k) .

The conclusion follows under (H1) if we let k converge to infinity. �

4.3 Proof of Theorem 3.2

Let (kn)n≥1 be the sequence defined in Theorem 3.2. We first proceed to
show that

∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx) → 0 with probability one as n → ∞ . (4.1)

According to Lemma 4.3, we have

E

[
∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

]

≤

∫

∣

∣η(x) − Eηn(x)
∣

∣µ(dx) + E

[
∫

Fkn

∣

∣ηn(x) − Eηn(x)
∣

∣µ(dx)

]

≤

∫

∣

∣η(x) − Eηn(x)
∣

∣µ(dx) +

(

1

n
Nkn

(h

2

)

)1/2

.

Therefore, applying Lemma 4.1 and the assumptions on h, we obtain

E

[
∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

]

→ 0 as n → ∞ .

Consequently, (4.1) will be proved if we show that

∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx) − E

[
∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

]

→ 0

with probability one as n → ∞. To do this, we use McDiarmid’s inequality
[19] for

∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx) − E

[
∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

]

.

14



Fix the training data at (x1, y1), . . . , (xn, yn) and replace the i-th pair (xi, yi)
by (x̂i, ŷi), changing the value of ηn(x) to η∗

ni(x). Clearly,

∣

∣

∣

∣

∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx) −

∫

Fkn

∣

∣η(x) − η∗
ni(x)

∣

∣µ(dx)

∣

∣

∣

∣

≤

∫

Fkn

∣

∣ηn(x) − η∗
ni(x)

∣

∣µ(dx)

≤
2

n

∫

Fkn

1

µ(Bx,h)
µ(dx)

≤
2

n
Nkn

(h

2

)

,

where the last inequality arises from Lemma 4.2. So, by McDiarmid’s in-
equality [19], for every α > 0,

P

{
∣

∣

∣

∣

∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx) − E

[
∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

]
∣

∣

∣

∣

≥ α

}

≤ 2 exp

(

−
ρ n

N 2
kn

(h/2)

)

,

for some positive constant ρ depending only on α. Thus, using the assump-
tion on h and the Borel-Cantelli lemma, we conclude that

∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx) − E

[
∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

]

→ 0

with probability one as n → ∞. This proves (4.1).

To finish the proof, let us denote for all n ≥ 1 and i = 1, . . . , n,

Zn
i =

∫

Fc
kn

1{Xi∈Bx,h}

µ(Bx,h)
µ(dx) .

Observe that

E
[1

n

n
∑

i=1

Zn
i

]

= µ(F c
kn

) .

Applying the Borel-Cantelli Lemma together with the condition
∑

n≥1 µ(F c
kn

) <
∞ yields

1

n

n
∑

i=1

Zn
i → 0 with probability one as n → ∞ . (4.2)

15



Write finally
∫

∣

∣η(x) − ηn(x)
∣

∣µ(dx) =

∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx) +

∫

Fc
kn

∣

∣η(x) − ηn(x)
∣

∣µ(dx)

≤

∫

Fkn

∣

∣η(x) − ηn(x)
∣

∣µ(dx) + µ(F c
kn

) +
1

n

n
∑

i=1

Zn
i ,

and this last term goes to 0 according to (H1), (4.1) and (4.2). This com-
pletes the proof of Theorem 3.2. �
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[9] Devroye, L. and Krzyżak, A. (1989). An equivalence theorem for L1 con-
vergence of the kernel regression estimate, Journal of Statistical Plan-

ning and Inference, Vol. 23, pp. 71–82.

[10] Diabo-Niang, S. and Rhomari, N. (2001). Nonparametric regression esti-
mation when the regressor takes its values in a metric space, University

Paris VI, Technical Report, http://www.ccr.jussieu.fr/lsta .

[11] Ferraty, F. and Vieu, P. (2000). Dimension fractale et estimation de la
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