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This paper studies statistical aggregation procedures in the regression

setting. A motivating factor is the existence of many different methods of

estimation, leading to possibly competing estimators.

We consider here three different types of aggregation: model selection (MS)

aggregation, convex (C) aggregation and linear (L) aggregation. The ob-

jective of (MS) is to select the optimal single estimator from the list; that

of (C) is to select the optimal convex combination of the given estimators;

and that of (L) is to select the optimal linear combination of the given

estimators. We are interested in evaluating the rates of convergence of the

excess risks of the estimators obtained by these procedures. Our approach

is motivated by recent minimax results in Nemirovski (2000) and Tsybakov

(2003).

There exist competing aggregation procedures achieving optimal conver-

gence for each of the (MS), (C) and (L) cases separately. Since the bounds

in these results are not directly comparable with each other, we suggest

an alternative solution. We prove that all the three optimal bounds can be

nearly achieved via a single “universal” aggregation procedure. Our pro-

cedure consists in mixing the initial estimators with weights obtained by

penalized least squares. Two different penalties are considered: one of them

is related to hard thresholding techniques, the second one is a data depen-

dent L1-type penalty.

1. Introduction. In this paper we study aggregation procedures and their

performance for regression models. Let Dn = {(X1, Y1), . . . , (Xn, Yn)} be a sample
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2 BUNEA, TSYBAKOV AND WEGKAMP

of independent random pairs (Xi, Yi) with

(1.1) Yi = f(Xi) + Wi, i = 1, . . . , n,

where f : X → R is an unknown regression function to be estimated, X is a Borel

subset of Rd, the Xi’s are fixed elements in X , and the errors Wi are zero mean

random variables.

Aggregation of arbitrary estimators in regression models has recently received in-

creasing attention: Nemirovski (2000), Juditsky and Nemirovski (2000), Yang (2000,

2001, 2004), Györfi et al. (2002), Birgé (2003), Tsybakov (2003), Wegkamp (2003)

and Catoni (2004). A motivating factor is the existence of many different methods of

estimation, leading to possibly competing estimators f̂1, . . . , f̂M . A natural idea is

then to look for a new, improved, estimator f̃ constructed by combining f̂1, . . . , f̂M

in a suitable way. Such an estimator f̃ is called aggregate and its construction is

called aggregation.

There exist three main aggregation problems: model selection (MS) aggregation,

convex (C) aggregation and linear (L) aggregation. They are discussed in detail by

Nemirovski (2000). The objective of (MS) is to select the optimal (in a sense to be

defined) single estimator from the list; that of (C) is to select the optimal convex

combination of the given estimators; and that of (L) is to select the optimal linear

combination of the given estimators.

Aggregation procedures are typically based on sample splitting. The initial sam-

ple Dn is divided into a training sample, used to construct estimators f̂1, . . . , f̂M ,

and an independent validation sample, used to learn, i.e., to construct f̃ . In this

paper we do not consider sample splitting schemes but rather deal with an idealized

scheme. We fix the training sample and thus instead of estimators f̂1, . . . , f̂M , we

have fixed functions f1, . . . , fM . That is, we focus our attention on aggregation.

A passage to the initial model is straightforward: it is enough to condition on the

training sample, and derive the bounds of Theorems 3.1 and 4.1 below. Then, we

can take expectations in both sides of these inequalities over the distribution of the
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AGGREGATION FOR GAUSSIAN REGRESSION 3

whole sample Dn.

To give precise definitions, denote by ‖g‖n =
{
n−1

∑n
i=1 g2(Xi)

}1/2 the empiri-

cal norm of a function g in Rd and set fλ =
∑M

j=1 λjfj for any λ = (λ1, . . . , λM ) ∈
RM . The performance of an aggregate f̃ can be judged against the following math-

ematical target:

Ef‖f̃ − f‖2n ≤ inf
λ∈HM

Ef‖fλ − f‖2n + ∆n,M ,(1.2)

where ∆n,M ≥ 0 is a remainder term independent of f characterizing the price to

pay for aggregation, and the set HM is either the whole RM (for linear aggrega-

tion), or the simplex ΛM =
{

λ = (λ1, . . . , λM ) ∈ RM : λj ≥ 0,
∑M

j=1 λj ≤ 1
}

(for

convex aggregation), or the set of vertices of ΛM , except the vertex (0, . . . , 0) ∈ RM

(for model selection aggregation). Here and later Ef denotes the expectation with

respect to the joint distribution of (X1, Y1), . . . , (Xn, Yn) under model (1.1). The

random functions fλ attaining infλ∈HM Ef‖fλ − f‖2n in (1.2) for the three values

taken by HM are called (L), (C) and (MS) oracles, respectively. Note that these

minimizers are not estimators since they depend on the true f .

We also introduce a fourth type of aggregation: subset selection, or (S) aggrega-

tion. For (S) aggregation we fix an integer D ≤ M and put HM = ΛM,D, where

ΛM,D denotes the set of all λ such that D of the coefficients of λ are equal to 1

and the remaining M − D coefficients are zero. Note that the (MS) aggregation

is a special case of subset selection ((S) aggregation) for D = 1. The literature on

subset selection techniques is very large, and dates back to Akaike (1974), Mallows

(1973) and Schwarz (1978). We refer to the recent comprehensive survey by Rao

and Wu (2001) for references on methods geared mainly to parametric models. For

a review of techniques leading to subset selection in nonparametric settings we refer

to Barron, Birgé and Massart (1999) and the references therein.

We say that the aggregate f̃ mimics the (L), (C), (MS) or (S) oracle if it satisfies

(1.2) for the corresponding set HM , with the minimal possible price for aggrega-

tion ∆n,M . Minimal possible values ∆n,M for the three problems can be defined
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4 BUNEA, TSYBAKOV AND WEGKAMP

via a minimax setting and they are called optimal rates of aggregation [Tsybakov

(2003)] and further denoted by ψn,M . Extending the work by Tsybakov (2003) in

the random design case to the fixed design case, we will show in Section 3 and 5

that under mild conditions

(1.3) ψn,M ³





M/n for (L) aggregation,

M/n for (C) aggregation, if M ≤ √
n,

√
{log(1 + M/

√
n)} /n for (C) aggregation, if M >

√
n,

{D log(1 + M/D)}/n for (S) aggregation,

(log M)/n for (MS) aggregation.

This implies that linear aggregation has the highest price, (MS) aggregation has

the lowest one, and convex aggregation occupies an intermediate place. The oracle

risks on the right in (1.2) satisfy a reversed inequality:

inf
1≤j≤M

Ef‖fj − f‖2n ≥ inf
λ∈ΛM

Ef‖fλ − f‖2n ≥ inf
λ∈RM

Ef‖fλ − f‖2n,

since the sets over which the infima are taken are nested. There is no winner among

the three aggregation techniques and the question how to choose the best among

them remains open.

The ideal oracle inequality (1.2) is available only for some special cases. See

Catoni (2004), Bunea and Nobel (2005), and Juditsky et al. (2005b) for (MS)

aggregation; Nemirovski (2000), Juditsky and Nemirovski (2000), Tsybakov (2003),

Juditsky et al. (2005a) for (C) aggregation with M >
√

n; and Tsybakov (2003), for

(L) aggregation and for (C) aggregation with M ≤ √
n. For more general situations

there exist less precise results of the type

(1.4) Ef‖f̃ − f‖2n ≤ (1 + ε) inf
λ∈HM

Ef‖fλ − f‖2n + ∆n,M,ε,
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AGGREGATION FOR GAUSSIAN REGRESSION 5

where ε > 0 is a constant independent of f and n, and ∆n,M,ε is a remainder term,

not necessarily having the same behavior in n and M as the optimal one ψn,M .

Bounds of the type (1.4) in regression problems have been obtained by many au-

thors mainly for the model selection case, see, for example, Kneip (1994), Barron et

al. (1999), Lugosi and Nobel (1999), Györfi et al. (2002), Baraud (2000, 2002), Birgé

and Massart (2001a), Birgé and Massart (2001b), Bartlett et al. (2002), Wegkamp

(2003), Birgé (2003), Bunea (2004), Catoni (2004), and the references cited in these

works. Most of the papers on model selection treat particular restricted families of

estimators, such as orthogonal series estimators, spline estimators, etc. An interest-

ing recent development due to Leung and Barron (2004) covers model selection for

all estimators admitting Stein’s unbiased estimation of the risk. There are relatively

few results on (MS) aggregation when the estimators are allowed to be arbitrary,

see Yang (2000, 2001, 2002), Györfi et al. (2002), Birgé (2003), Tsybakov (2003),

Wegkamp (2003) and Catoni (2004).

Various convex aggregation procedures for nonparametric regression have emerged

in the last decade. The literature on oracle inequalities of the type (1.2) and (1.4)

for the (C) aggregation case is not nearly as large as the one on model selection.

We refer to Juditsky and Nemirovski (2000), Nemirovski (2000), Yang (2000, 2001,

2004), Birgé (2003), Tsybakov (2003), Koltchinskii (2004), Audibert (2005), Judit-

sky et al. (2005a), Bunea and Nobel (2005).

Finally, linear aggregation procedures are discussed in Nemirovski (2000), Tsy-

bakov (2003) and Bunea and Nobel (2005).

Given the existence of competing aggregation procedures achieving either op-

timal (MS), or (C), or (L) bounds, there is an ongoing discussion as to which

procedure is the best one. Since this cannot be decided by merely comparing the

optimal bounds, we suggest an alternative solution. We show that all the three

optimal (MS), (C) and (L) bounds can be nearly achieved via a single aggrega-

tion procedure. We also show that this procedure leads to near optimal bounds for

the newly introduced (S) aggregation, for any subset size D. Our answer will thus
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6 BUNEA, TSYBAKOV AND WEGKAMP

meet the desiderata of both model (subset) selection and model averaging. The

procedures that we suggest for aggregation are based on penalized least squares.

We consider two penalties that can be associated with hard thresholding and soft

thresholding (L1 or Lasso type penalty), respectively.

The paper is organized as follows. Section 2 introduces notation and assumptions

used throughout the paper. In Section 3 we show that a hard threshold aggregate

satisfies inequalities of the type (1.4) with the optimal remainder term ψn,M . We

establish the oracle inequalities for all three sets HM under consideration, hence

showing that the hard threshold aggregate achieves simultaneously the (S) (and

hence the (MS)), the (C) and the (L) bounds. In Section 4 we study aggregation

with the L1 penalty and we obtain (1.4) simultaneously for the (S), (C) and (L)

cases, with a remainder term ∆n,M that differs from the optimal ψn,M only in a

logarithmic factor. We give the corresponding lower bounds for (S), (C) and (L)

aggregation in Section 5, complementing the results obtained for the random design

case by Tsybakov (2003). All proofs are deferred to the appendices.

2. Notation and assumptions. The following two assumptions on the re-

gression model (1.1) are supposed to be satisfied throughout the paper.

Assumption (A1) The random variables Wi are independent and Gaussian N(0, σ2).

Assumption (A2) The functions f : X → R and fj : X → R, j = 1, . . . , M , with

M ≥ 2, belong to the class F0 of uniformly bounded functions defined by

F0
def=

{
g : X → R

∣∣∣ sup
x∈X

|g(x)| ≤ L
}

where L < ∞ is a constant that is not necessarily known to the statistician.

For any λ = (λ1, . . . , λM ) ∈ RM , define

fλ(x) =
M∑

j=1

λjfj(x).

The functions fj can be viewed as estimators of f constructed from a training

sample. Here we consider the ideal situation in which they are fixed; we concentrate

imsart-aos ver. 2005/10/19 file: annals1.tex date: November 2, 2005



AGGREGATION FOR GAUSSIAN REGRESSION 7

on learning only. For each λ = (λ1, . . . , λM ) ∈ RM , let M(λ) denote the number of

non-zero coordinates of λ, that is,

M(λ) =
M∑

j=1

I{λj 6=0} = Card J(λ)

where I{·} denotes the indicator function, and J(λ) = {j ∈ {1, . . . ,M} : λj 6= 0}.
Furthermore we introduce the residual sum of squares

Ŝ(λ) =
1
n

n∑

i=1

{Yi − fλ(Xi)}2,

and the function

L(λ) = 2 log
(

eM

M(λ) ∨ 1

)
,

for all λ ∈ RM . The method that we propose is based on aggregating the fj ’s via

penalized least squares. Given a penalty term pen(λ), the penalized least squares

estimator λ̂ = (λ̂1, . . . , λ̂M ) is defined by

λ̂ = arg min
λ∈RM

{
Ŝ(λ) + pen(λ)

}
,(2.1)

which renders in turn the aggregated estimator

f̃(x) = f
λ̂
(x).(2.2)

Since the vector λ̂ can take any values in RM , the aggregate f̃ is not a model

selector in the traditional sense, nor is it necessarily a convex combination of the

functions fj . Nevertheless, we will show that it mimics the (S), (C) and (L) oracles

when one of the following two penalties is used:

pen(λ) =
2σ2

n

{
1 +

2 + a

1 + a

√
L(λ) +

1 + a

a
L(λ)

}
M(λ)(2.3)

or

pen(λ) = 2
√

2σ

√
log M + log n

n

M∑

j=1

‖λjfj‖n.(2.4)
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8 BUNEA, TSYBAKOV AND WEGKAMP

In (2.3), a > 0 is a parameter to be set by the user. We refer to the penalty in (2.3)

as hard threshold penalty. This is motivated by the well known fact that, in the

sequence space model (where the functions f1, . . . , fM are orthonormal with respect

to the scalar product induced by the norm ‖ ·‖n), the penalty pen(λ) ∼ M(λ) leads

to λ̂j ’s that are hard threshold values of the Yj ’s (see, for instance, Härdle et al.

(1998), page 138). Our penalty (2.3) is not exactly of that form, but it differs from

it only in a logarithmic factor.

The penalty (2.4), again in the sequence space model, leads to λ̂j ’s that are

soft threshold values of Yj ’s. We will call it therefore soft threshold penalty or L1-

penalty. Penalized least squares estimators with soft threshold penalty pen(λ) ∼
∑M

j=1 |λj | are closely related to Lasso-type estimators [Efron et al. (2004), see also

Antoniadis and Fan (2001), Fan and Li (2001), Fan and Peng (2004), where other

related penalties are discussed].

Our results show that the hard threshold penalty (2.3) allows optimal aggre-

gation under (A1) and (A2). The soft threshold penalty (2.4) allows near optimal

aggregation under somewhat different conditions.

3. Optimal aggregation with the hard threshold penalty. In this sec-

tion we show that the penalized least squares aggregate (2.2) corresponding to the

penalty term (2.3) achieves simultaneously the (MS), (L), and (C) bounds of the

form (1.4) with the correct rates ∆n,M = ψn,M . Consequently, the smallest bound

is achieved by our aggregate. The next theorem presents an oracle inequality that

implies all the three bounds, as well as a bound for (S) aggregation.

Theorem 3.1. Assume (A1) and (A2). Let f̃ be the penalized least squares

aggregate defined in (2.2) with penalty (2.3). Then, for all integers n ≥ 1 and

M ≥ 2,

Ef‖f̃ − f‖2n(3.1)

≤ (1 + a) inf
λ∈RM

[
‖fλ − f‖2n +

σ2

n

{
5 +

2 + 3a

a
L(λ)

}
M(λ)

]
+

σ2

n

6(1 + a)2

a(e− 1)
.
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AGGREGATION FOR GAUSSIAN REGRESSION 9

Proof. See appendix A.

Corollary 3.2. Under the conditions of Theorem 3.1, there exists a constant

C > 0 such that for all integers n ≥ 1 and M ≥ 2 and D ≤ M , the following upper

bounds for RM,n
def= Ef‖f̃ − f‖2n hold:

RM,n ≤ (1 + a) inf
1≤j≤M

‖fj − f‖2n + C(1 + a + a−1)σ2 log M

n
(3.2)

RM,n ≤ (1 + a) inf
λ∈ΛM,D

‖fλ − f‖2n + C(1 + a + a−1)σ2 D

n
log

(
M

D
+ 1

)
(3.3)

RM,n ≤ (1 + a) inf
λ∈RM

‖fλ − f‖2n + C(1 + a + a−1)σ2 M

n
(3.4)

RM,n ≤ (1 + a) inf
λ∈ΛM

‖fλ − f‖2n + C(1 + a + a−1)(L2 + σ2)ψC
n (M),(3.5)

where

ψC
n (M) =





M/n if M ≤ √
n,

√
{log(eM/

√
n)}/n if M >

√
n.

Proof. See appendix A.

Remark 1. Typically, the variance σ2 = EfW 2 is unknown and we need to sub-

stitute an estimate in the penalty (2.3). We consider the situation described in the

introduction where the functions fj are estimators based on an independent (train-

ing) data set D′` that consists of observations (X ′
j , Y

′
j ) following (1.1). Let σ̂2 be an

estimate of σ2 based on D′` only. We write E(1)
f (E(2)

f ) for expectation with respect

to D′` (Dn), respectively and let Ef = E(1)
f E(2)

f be the product expectation. Let f̂

be the aggregate corresponding to penalty (2.3) with σ2 replaced by σ̂2. Note that

Ef‖f̂ − f‖2n = E(1)
f E(2)

f ‖f̂ − f‖2nI{2σ̂2≥σ2} + E(1)
f E(2)

f ‖f̂ − f‖2nI{2σ̂2≥σ2}.

Inspection of the proof of Theorem 3.1 shows that we may bound E(2)
f ‖f̂−f‖2nI{2σ̂2≥σ2}

simply by the right hand side of (3.1) with σ2 substituted by 2σ̂2, as Theorem 3.1
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10 BUNEA, TSYBAKOV AND WEGKAMP

holds for any penalty term larger than (2.3). Consequently we find

Ef‖f̂ − f‖2nI{2σ̂2≥σ2} ≤
2E(1)

f σ̂2

n

6(1 + a)2

a(e− 1)

+(1 + a) inf
λ∈RM

[
E(1)

f ‖fλ − f‖2n +
2E(1)

f σ̂2

n

{
5 +

2 + 3a

a
L(λ)

}
M(λ)

]
.

Next, we observe that E(2)
f ‖f̂ − f‖2n ≤ 6σ2 + 2L2. For this, we use the reasoning

leading to (A.4) in the proof of Theorem 4.1, in which we replace IAc by 1 through-

out. Notice that this argument holds for any positive penalty term pen(λ) such

that pen(λ0) = 0 with λ0 = (0, . . . , 0), and hence it holds for the penalty term used

here. Thus

Ef‖f̂ − f‖2nI{2σ̂2<σ2} ≤
(
6σ2 + 2L2

)
P(1)

f {2σ̂2 < σ2}.

Combining the three displays above we see that f̂ achieves a bound similar to (3.1)

if the estimator σ̂2 satisfies P(1)
f {2σ̂2 < σ2} ≤ c1/n and E(1)

f σ̂2 ≤ c2σ
2, for some

finite constants c1, c2. Since the sample variance based on D′`, with ` ≥ cn, for some

positive constant c, meets both requirements, it can always play the role of σ̂2.

4. Near optimal aggregation with a data dependent L1 penalty. In

this section we show that the penalized least squares aggregate (2.2) using a penalty

of the form (2.4) achieves simultaneously the (MS), (L), and (C) bounds of the form

(1.4) with near optimal rates ∆n,M = ψ̄n,M . We require the following additional

assumption.

Assumption (A3) Define the matrices

Ψn =

(
1
n

n∑

i=1

fj(Xi)fj′(Xi)

)

1≤j,j′≤M

, diag(Ψn) = diag(‖f1‖2n, . . . , ‖fM‖2n).

There exists κ = κn,M > 0 such that the matrix Ψn − κ diag(Ψn) is positive semi-

definite for any given n ≥ 1, M ≥ 2.

Note that this assumption does not exclude the matrices Ψn whose ordered

eigenvalues can be arbitrarily close to 0 as M → ∞. Degenerate matrices Ψn are

not excluded neither.
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AGGREGATION FOR GAUSSIAN REGRESSION 11

The next theorem presents an oracle inequality similar to the one of Theorem

3.1.

Theorem 4.1. Assume (A1), (A2) and (A3). Let f̃ be the penalized least

squares aggregate defined by (2.2) with penalty (2.4). Then, for all ε > 0, and

all integers n ≥ 1, M ≥ 2, we have,

Ef‖f̃ − f‖2n(4.1)

≤ inf
λ∈RM

{
(1 + ε)‖fλ − f‖2n +

(
32 + 8ε +

32
ε

)
σ2

κ

log M + log n

n
M(λ)

}

+
4L2 + 12σ2

n
√

π(log M + log n)
+ 6σ2

√
n + 2

n
exp

(
− n

16

)
.

Proof. See appendix A.

Corollary 4.2. Let assumptions of Theorem 4.1 be satisfied. Then there exists

a constant C = C(L2, σ2, κ) > 0 such that for all ε > 0 and for all integers n ≥ 1,

M ≥ 2 and D ≤ M ,

Ef‖f̃ − f‖2n ≤ (1 + ε) inf
1≤j≤M

‖fj − f‖2n + C
(
1 + ε + ε−1

) log(M ∨ n)
n

.

Ef‖f̃ − f‖2n ≤ (1 + ε) inf
λ∈ΛM,D

‖fλ − f‖2n + C
(
1 + ε + ε−1

) D log(M ∨ n)
n

.

Ef‖f̃ − f‖2n ≤ (1 + ε) inf
λ∈RM

‖fλ − f‖2n + C
(
1 + ε + ε−1

) M log(M ∨ n)
n

.

Ef‖f̃ − f‖2n ≤ (1 + ε) inf
λ∈ΛM

‖fλ − f‖2n + C
(
1 + ε + ε−1

)
ψ

C

n (M),

where

ψ
C

n (M) =





(M log n)/n if M ≤ √
n,

√
(log M)/n if M >

√
n.

Proof. The argument is similar to that of the proof of Corollary 3.2.

Remark 2. Using exactly the same reasoning as in Remark 1, we can replace σ2

in the penalty term by twice the sample variance based on D′`.
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12 BUNEA, TSYBAKOV AND WEGKAMP

Remark 3. Inspection of the proofs shows that the constants C = C(L2, σ2, κ)

in Corollary 4.2 have the form C = A1 + A2/κ, where A1 and A2 are constants

independent of κ. In general, κ may depend on n and M . However, if κ > c for some

constant c > 0, independent of n and M , as discussed in Remarks 3 and 4 below,

the rates of aggregation given in Corollary 4.2 are near optimal, up to logarithmic

factors. They are exactly optimal (cf. (1.3) and the lower bounds of the next sec-

tion) for some configurations of n,M : for (MS)-aggregation if na′ ≤ M ≤ na, and

for (C)-aggregation if n1/2 ≤ M ≤ na, where 0 < a′ < a < ∞.

Remark 4. If ξmin, the smallest eigenvalue of the matrix Ψn, is positive, (A3)

is satisfied for κ = ξmin/L2. In the standard parametric regression context where

M is fixed and Ψn/n converges to a nonsingular M ×M matrix, ξmin > c – and

therefore κ > c/L2 – for some c > 0, independent of M and n.

Remark 5. Assumption (A3) is trivially satisfied with κ = 1 if Ψn is a diagonal

matrix. An example illustrating this situation is related to the orthogonal series

nonparametric regression: M = Mn is allowed to converge to ∞ as n → ∞ and

the basis functions fj are orthogonal with respect to the empirical norm. Another

example is related to sequence space models, where the estimators fj = f̂j are

constructed from non-intersecting blocks of coefficients. Aggregating such mutually

orthogonal estimators leads to adaptive estimators with good asymptotic properties

[cf., e.g., Nemirovski (2000)].

5. Lower bounds. In this section we provide lower bounds showing that the

remainder terms in the upper bounds obtained in the previous sections are optimal

or near optimal. For regression with random design and the L2(Rd, µ)-risks, such

lower bounds for aggregation with optimal rates ψn,M as given in (1.3) were estab-

lished by Tsybakov (2003). The next theorem extends them to aggregation for the

regression model with fixed design. Furthermore we state these bounds in a more
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AGGREGATION FOR GAUSSIAN REGRESSION 13

general form, considering not only the expected squared risks, but also other loss

functions, and instead of the (MS) aggregation bound, we provide the more general

(S) aggregation bound.

Let w : R→ [0,∞) be a loss function, i.e., a monotone non-decreasing function

satisfying w(0) = 0 and w 6≡ 0.

Theorem 5.1. Let the integers n, M, D be such that (2 ∨ D) ≤ M ≤ n, and

let X1, . . . , Xn be distinct points. Assume that HM is either the whole RM (for the

(L) aggregation case), or the simplex ΛM (for the (C) aggregation case), or the set

ΛM,D (for the (S) aggregation case). Let the corresponding ψn,M be given by (1.3)

for (L) and (C) aggregation and, for (S) aggregation, let

ψn,M =
D

n
log

(
M

D
+ 1

)

with M log(M/D + 1) ≤ n and either D = 1 or M ≥ 6D. Then there exist

f1, . . . , fM ∈ F0 such that

(5.1) inf
Tn

sup
f∈F0

Efw
[
ψ−1

n,M

(
‖Tn − f‖2n − inf

λ∈HM
‖fλ − f‖2n

)]
≥ c,

where infTn denotes the infimum over all estimators and the constant c > 0 does

not depend on n,M and D.

Proof. See appendix A.

Setting w(u) = u in Theorem 5.1 we get the lower bounds for expected squared

risks showing optimality or near optimality of the remainder terms in the oracle

inequalities of Corollaries 3.2 and 4.2. The choice of w(u) = I{u > a} with some

fixed a > 0 leads to the lower bounds for probabilities showing near optimality of

the remainder terms in the corresponding upper bounds “in probability” obtained

in Bunea, Tsybakov and Wegkamp (2004).
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14 BUNEA, TSYBAKOV AND WEGKAMP

APPENDIX A: PROOFS

A.1. Proof of Theorem 3.1. We define Λm as the set of elements in RM

with exactly m non-zero coefficients,

Λm =
{
λ ∈ RM : M(λ) = m

}
.

Let Jm,k, k = 1, . . . ,
(
M
m

)
, be all the subsets of {1, . . . , M} of cardinality m and we

define

Λm,k(λ) = {λ = (λ1, . . . , λM ) ∈ Λm : λj 6= 0 ⇔ j ∈ Jm,k} .

Thus the collection
{

Λm,k : 1 ≤ k ≤ (
M
m

)}
forms a partition of the set Λm. Next

we observe that

inf
λ∈RM

{
Ŝ(λ) + pen(λ)

}
= inf

0≤m≤M
inf

1≤k≤(M
m)

inf
λ∈Λm,k

{
Ŝ(λ) + pen(λ)

}

and the penalty

pen(λ) =
2σ2

n

{
1 +

2 + a

1 + a

√
L(λ) +

1 + a

a
L(λ)

}
M(λ)

is the same for all λ ∈ Λm as M(λ) = m and L(λ) = Lm ≡ 2 ln (eM/(m ∨ 1)) for

all λ ∈ Λm.

We are now in the position to apply Theorem 2 in Birgé and Massart (2001b). This

result implies that (setting their parameters θ = a/(1 + a) and K = 2)

Ef‖f̃ − f‖2n ≤ (1 + a) inf
0≤m≤M

inf
1≤k≤(M

m)

{
inf

λ∈Λm,k

‖fλ − f‖2n + pen(λ)− mσ2

n

}

+
(1 + a)2

a

σ2

n
Σ

{
(2 + a)2

(1 + a)2
+ 2

}
,

where Σ is given by

Σ =
M∑

m=1

(M
m)∑

k=1

exp(−mLm) =
M∑

m=1

(
M

m

)
exp(−mLm).

Using the crude bound
(
M
m

) ≤ (eM/m)m [see, for example, Devroye et al. (1996),

page 218], we may bound Σ by

Σ ≤
M∑

m=1

(
eM

m

)−m

≤
M∑

m=1

e−m ≤ 1
e− 1

.
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AGGREGATION FOR GAUSSIAN REGRESSION 15

For all λ ∈ Λm, we have

npen(λ)−mσ2 = σ2m

(
1 + 2

2 + a

1 + a

√
Lm + 2

1 + a

a
Lm

)

≤ σ2m

{
1 +

(
2 + a

1 + a

)2

+
(

1 + 2
1 + a

a

)
Lm

}

≤ σ2m

(
5 +

2 + 3a

a
Lm

)
.

Consequently we find

Ef‖f̃ − f‖2n ≤ (1 + a) inf
0≤m≤M

inf
1≤k≤(M

m)

{
inf

λ∈Λm,k

‖f − fλ‖2n +
σ2m

n

(
5 +

2 + 3a

a
Lm

)}

+
(1 + a)2

a
(4 + 2)

σ2

n

1
e− 1

= (1 + a) inf
λ∈RM

[
‖f − fλ‖2n +

σ2M(λ)
n

{
5 +

2 + 3a

a
L(λ)

}]
+

6(1 + a)2

a(e− 1)
σ2

n
,

which proves the result.

A.2. Proof of Corollary 3.2.

Proof of (3.2) and (3.3). Since the infimum on the right of (3.1) is taken over all

λ ∈ RM , the (S) bound (3.3) easily follows by considering only the subset consist-

ing of the
(
M
D

)
vectors λ ∈ ΛM,D for which M(λ) = D and L(λ) = 2 log(eM/D) ≤

6 log(M/D + 1). The (MS) bound (3.2) is a special case of (3.3) for D = 1.

Proof of (3.4). Since x 7→ x log(eM/x) is increasing for 1 ≤ x ≤ M ,

sup
λ∈RM

M(λ)
n

L(λ) =
2M

n
.

The result then follows from (3.1).

Proof of (3.5). For M ≤ √
n the result follows from (3.4). Assume now that M >

√
n

and let m be the integer part of

xn,M =
√

n

/√
log(eM/

√
n).
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16 BUNEA, TSYBAKOV AND WEGKAMP

Clearly, 0 ≤ m ≤ xn,M ≤ M . First, consider the case m ≥ 1. Denote by C the set

of functions h of the form

h(x) =
1
m

M∑

j=1

kjfj(x), kj ∈ {0, 1, . . . , m},
m∑

j=1

kj ≤ m.

The following approximation result can be obtained by the “Maurey argument”

(see, for example, Barron (1993), Lemma 1, or Nemirovski (2000), pages 192, 193):

min
g∈C ‖g − f‖2n ≤ min

λ∈ΛM
‖fλ − f‖2n +

L2

m
.(A.1)

For completeness, we give the proof of (A.1) in the Appendix B. Since M(λ) ≤
m ≤ xn,M for the vectors λ corresponding to g ∈ C, and since x 7→ x log

(
eM
x

)
is

increasing for 1 ≤ x ≤ M , we get from (3.1)

Ef‖f̃ − f‖2n ≤ inf
g∈C

{
C1‖g − f‖2n + C2

xn,M

n
log

(
eM

xn,M

)}
+

C3

n

for some constants C1, C2 and C3 depending on a and σ2. Using this inequality,

(A.1) and the fact that m = bxn,Mc ≥ xn,M/2 for xn,M ≥ 1, we obtain

Ef‖f̃ − f‖2n ≤ C1 inf
λ∈ΛM

‖fλ − f‖2n + C1
2L2

xn,M
+ C2

xn,M

n
log

(
eM

xn,M

)
+

C3

n
.

We use this bound for all choices of λ ∈ ΛM with m ≥ M(λ) 6= 0. For m = 0, we

only need to consider the singular case λ = 0 as M(λ) = 0 if and only if λ = 0.

Note that for m = 0, we have the trivial upper bound C1‖f‖2n + C3n
−1 for the

right-hand side of (3.1) and clearly n−1 ≤ ψC
n (M). To complete the proof of the

Corollary, we note that

log
(

eM

xn,M

)
= log

(
eM√

n

√
log

(
eM√

n

))
≤ 3 log

(
eM√

n

)
,

in view of the elementary inequality log(y
√

log(y)) ≤ 3 log(y), for all y ≥ 0.

A.3. Proof of Theorem 4.1. We begin as in Loubes and Van de Geer (2002).

First we define

rn = 2
√

2σ

√
log M + log n

n

imsart-aos ver. 2005/10/19 file: annals1.tex date: November 2, 2005



AGGREGATION FOR GAUSSIAN REGRESSION 17

and rn,j = rn‖fj‖n. By definition, f̃ = f
λ̂

satisfies

Ŝ(λ̂) +
M∑

j=1

rn,j |λ̂j | ≤ Ŝ(λ) +
M∑

j=1

rn,j |λj |

for all λ ∈ RM , which we may rewrite as

‖f̃ − f‖2n +
M∑

j=1

rn,j |λ̂j | ≤ ‖fλ − f‖2n +
M∑

j=1

rn,j |λj |+ 2
n

n∑

i=1

Wi(f̃ − fλ)(Xi).

We define the random variables

Vj =
1
n

n∑

i=1

fj(Xi)Wi, 1 ≤ j ≤ M,

and the event

A =
M⋂

j=1

{2|Vj | ≤ rn,j} .

The normality assumption (A1) on Wi implies that
√

nVj ∼ N
(
0, σ2‖fj‖2n

)
, 1 ≤

j ≤ M . Applying the union bound followed by the standard tail bound for the

N(0, 1) distribution, yields

P(Ac) ≤
M∑

j=1

P{√n|Vj | >
√

nrn,j/2} ≤
M∑

j=1

4√
2π

σ‖fj‖n√
nrn,j

exp

(
− nr2

n,j

8σ2‖fj‖2n

)
(A.2)

=
1

n
√

π(log M + log n)
.

Then, on the set A, we find

2
n

n∑

i=1

Wi(f̃ − fλ)(Xi) = 2
M∑

j=1

Vj(λ̂j − λj) ≤
M∑

j=1

rn,j |λ̂j − λj |

and therefore, still on the set A,

‖f̃ − f‖2n ≤ ‖fλ − f‖2n +
M∑

j=1

rn,j |λ̂j − λj |+
M∑

j=1

rn,j |λj | −
M∑

j=1

rn,j |λ̂j |.

Recall that J(λ) denotes the set of indices of the non-zero elements of λ, and

M(λ) = Card J(λ). Rewriting the right-hand side of the previous display, we find,
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18 BUNEA, TSYBAKOV AND WEGKAMP

on the set A,

‖f̃ − f‖2n ≤ ‖fλ − f‖2n +




M∑

j=1

rn,j |λ̂j − λj | −
∑

j 6∈J(λ)

rn,j |λ̂j |



+


−

∑

j∈J(λ)

rn,j |λ̂j |+
∑

j∈J(λ)

rn,j |λj |



≤ ‖fλ − f‖2n + 2
∑

j∈J(λ)

rn,j |λ̂j − λj |

by the triangle inequality and the fact that λj = 0 for j 6∈ J(λ). By assumption

(A3), we have

∑

j∈J(λ)

r2
n,j |λ̂j − λj |2 ≤ r2

n

M∑

j=1

‖fj‖2n|λ̂j − λj |2

= r2
n(λ̂− λ)′diag(Ψn)(λ̂− λ)

≤ r2
nκ−1(λ̂− λ)′Ψn(λ̂− λ)

= r2
nκ−1‖f̃ − fλ‖2n.

Combining this with the Cauchy-Schwarz and triangle inequalities, respectively, we

find further that, on the set A,

‖f̃ − f‖2n ≤ ‖fλ − f‖2n + 2
∑

j∈J(λ)

rn,j |λ̂j − λj |(A.3)

≤ ‖fλ − f‖2n + 2rn

√
M(λ)/κ

(
‖f̃ − f‖n + ‖fλ − f‖n

)
.

Inequality (A.3) is of the simple form v2 ≤ c2 + vb + cb with v = ‖f̃ − f‖n,

b = 2rn

√
M(λ)/κ and c = ‖fλ−f‖n. After applying the inequality 2xy ≤ x2/α+αy2

(x, y ∈ R, α > 0) twice, to 2bc and 2bv, respectively, we easily find v2 ≤ v2/(2α) +

α b2+(2α+1)/(2α) c2, whence v2 ≤ a/(a−1){b2(a/2)+c2(a+1)/a} for a = 2α > 1.

Recalling that (A.3) is valid on the set A, we now get that

Ef

[
‖f̃ − f‖2nIA

]
≤ inf

λ∈RM

{
a + 1
a− 1

‖fλ − f‖2n +
2a2

κ(a− 1)
r2
nM(λ)

}
, ∀ a > 1.
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AGGREGATION FOR GAUSSIAN REGRESSION 19

It remains to bound Ef‖f̃ − f‖2nIAc . Writing ‖W‖2n = n−1
∑n

i=1 W 2
i and using the

inequality (x + y)2 ≤ 2x2 + 2y2, we find that

Ef‖f̃ − f‖2nIAc ≤ 2Ef Ŝ(f̃)IAc + 2Ef Ŝ(f)IAc

= 2Ef Ŝ(f̃)IAc + 2Ef‖W‖2nIAc .

Next, since pen(λ̃) ≥ 0 and by the definition of f̃ , for λ0 = (0, . . . , 0)′ ∈ RM ,

Ef Ŝ(f̃)IAc ≤ Ef

{
Ŝ(f̃) + pen(λ̃)

}
IAc

≤ Ef

{
Ŝ(fλ0) + pen(λ0)

}
IAc

= Ef Ŝ(fλ0)IAc

≤ 2Ef‖f‖2nIAc + 2Ef‖W‖2nIAc

≤ 2L2P(Ac) + 2Ef‖W‖2nIAc ,

whence

Ef‖f̃ − f‖2nIAc ≤ 4L2P(Ac) + 6Ef‖W‖2nIAc .(A.4)

In order to bound the last term on the right, we introduce the event

B =

{
1
n

n∑

i=1

W 2
i ≤ 2σ2

}
.

This set has probability larger than 1− exp(−n/8) since

P{Bc} = P
{

χ2
n − n >

√
2n

√
n/2

}

≤ exp

(
− n/2

2 + 2
√

n/2
√

2/n

)

= exp(−n/8)

by Lemma B.2 below. Observe further that

Ef‖W‖2nIAc ≤ 2σ2P{Ac}+ Ef‖W‖2nIBc

and by the Cauchy-Schwarz inequality we find

Ef‖W‖2nIBc ≤ (
Ef‖W‖4n

)1/2
exp(−n/16)

=

√(
3σ4

n
+

n− 1
n

σ4

)
exp(−n/16).

imsart-aos ver. 2005/10/19 file: annals1.tex date: November 2, 2005



20 BUNEA, TSYBAKOV AND WEGKAMP

Collecting all these bounds, and using the bound (A.2) on P{Ac}, we obtain

Ef‖f̃ − f‖2nIAc ≤ 4L2P(Ac) + 6Ef‖W‖2nIAc

≤ 4L2 + 12σ2

n
√

π(log M + log n)
+ 6σ2

√
n + 2

n
exp(−n/16).

The proof of the theorem is complete by taking ε = 2/(a− 1).

A.4. Proof of Theorem 5.1. We proceed similarly to Tsybakov (2003). The

proof is based on the following easy corollary of the Fano lemma [which can be

obtained, for example, by combining Theorems 2.2 and 2.5 in Tsybakov (2004)].

Lemma A.1. Let w be a loss function, A > 0 be such that w(A) > 0, and let C
be a set of functions on X of cardinality N = card(C) ≥ 2 such that

‖f − g‖2n ≥ 4s2 > 0, ∀ f, g ∈ C, f 6= g,

and the Kullback divergences K(Pf ,Pg) between the measures Pf and Pg satisfy

K(Pf ,Pg) ≤ (1/16) log N, ∀ f, g ∈ C.

Then for ψ = s2/A we have

inf
Tn

sup
f∈C

Efw
[
ψ−1‖Tn − f‖2n

]
≥ c1w(A),

where infTn denotes the infimum over all estimators and c1 > 0 is a constant.

The (S) aggregation case. Pick M disjoint subsets S1, . . . , SM of {X1, . . . , Xn}, each

Sj of cardinality log(M/D+1) (w.l.o.g. we assume that log(M/D+1) is an integer)

and define the functions

fj(x) = γI{x∈Sj}, j = 1, . . . , M,

where γ ≤ L is a positive constant to be chosen. Consider the set of functions V =
{
fλ : λ ∈ ΛM,D

}
. Clearly, V ⊂ F0. Thus, it suffices to prove the (S) lower bound of
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the theorem where the supremum over f ∈ F0 is replaced by that over f ∈ V. But for

f ∈ V we have minλ∈ΛM,D ‖fλ−f‖2n = 0, and therefore to finish the proof for the (S)

case, it suffices to bound from below the quantity infTn
supf∈V Efw(ψ−1

n,M‖Tn−f‖2n)

where ψn,M = D log(M/D + 1)/n. This will be done by applying Lemma A.1. In

fact, note that for every two functions fλ and fλ̄ in V we have

(A.5) ‖fλ − fλ̄‖2n =
γ2 log(M/D + 1)

n
ρ(λ, λ̄)

and ρ(λ, λ̄) ≤ D, where ρ(λ, λ̄) def=
∑M

j=1 I{λj 6=λ̄j} is the Hamming distance between

λ = (λ1, . . . , λM ) ∈ ΛM,D and λ̄ = (λ̄1, . . . , λ̄M ) ∈ ΛM,D. Lemma 4 in Birgé and

Massart (2001a) (see also Gilbert (1952)) asserts that if M ≥ 6D there exists a

subset Λ′ ⊂ ΛM,D such that, for some constant c̃ > 0 independent of M and D,

(A.6) log card(Λ′) ≥ c̃D log
(

M

D
+ 1

)

and

(A.7) ρ(λ, λ̄) ≥ c̃D, ∀ λ, λ̄ ∈ Λ′, λ 6= λ̄.

Consider a set of functions C = {fλ : λ ∈ Λ′} ⊂ V. From (A.5) and (A.7), for any

two functions fλ and fλ̄ in C we have

(A.8) ‖fλ − fλ̄‖2n ≥
c̃γ2D log(M/D + 1)

n

def= 4s2.

Since Wj ’s are N(0, σ2) random variables, the Kullback divergence K(Pfλ ,Pfλ̄) be-

tween Pfλ and Pfλ̄ satisfies

(A.9) K(Pfλ ,Pfλ̄) =
n

2σ2
‖fλ − fλ̄‖2n, j = 1, . . . , M.

In view of (A.5) and (A.9), one can choose γ small enough to have

K(Pfλ ,Pfλ̄) ≤ 1
16c̃

D log
(

M

D
+ 1

)
≤ 1

16
log card(Λ′) =

1
16

log card(C)

for all λ, λ̄ ∈ Λ′. Now, to get the lower bound for the (S) case, it remains to

use this inequality together with (A.8), and to apply Lemma A.1. Note that the
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22 BUNEA, TSYBAKOV AND WEGKAMP

above argument holds through under the assumption that M ≥ 6D which is

needed to assure (A.6). In the remaining case where D = 1,M < 6D we have

ψn,M ≤ (log 7)/n, and we define the set C = {fλ′ , fλ′′} with λ′ = (1, 0, . . . , 0) ∈ ΛM

and λ′′ = (0, . . . , 0, 1) ∈ ΛM . Then ‖fλ′− fλ′′‖2n = 2γ2 log(M +1)/n ≥ 2γ2(log 3)/n,

and the result easily follows from (A.9) and Lemma A.1.

The (C) aggregation case. Consider the orthonormal trigonometric basis in L2[0, 1]

defined by φ1(x) ≡ 1, φ2k(x) =
√

2 cos(2πkx), φ2k+1(x) =
√

2 sin(2πkx), k =

1, 2, . . . , for x ∈ [0, 1]. Set

(A.10) fj(x) = γ

n∑

k=1

φj(k/n)I{x=Xk}, j = 1, . . . , M,

where γ ≤ L/
√

2 is a positive constant to be chosen. The system of functions

{φj}j=1,...,M is orthonormal w.r.t. the discrete measure that assigns the mass 1/n

to each of the points k/n, k = 1, . . . , n:

1
n

n∑

k=1

φj(k/n)φl(k/n) = δjl, j, l = 1, . . . , n,

where δjl is the Kronecker delta (see, e.g., Tsybakov (2004), p.45, Lemma 1.9).

Hence

(A.11) < fj , fl >n= γ2δjl, j, l = 1, . . . ,M,

where < ·, · >n stands for the scalar product induced by ‖ · ‖n.

Assume first that M >
√

n (i.e., we are in the “sparse” case). Define an integer

m =
⌈
c2

[
n/ log

( M√
n

+ 1
)]1/2

⌉

for a constant c2 > 0 chosen in such a way that M ≥ 6m. Consider the finite

set C ⊂ ΛM composed of such convex combinations of f1, . . . , fM that m of the

coefficients λj are equal to 1/m and the remaining M −m coefficients are zero. In

view of (A.11), for every pair of functions g1, g2 ∈ C we have

(A.12) ‖g1 − g2‖2n ≤ 2γ2/m.
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To finish the proof for M >
√

n it suffices now to apply line by line the argument

after the formula (10) in Tsybakov (2003) replacing there ‖ · ‖ by ‖ · ‖n. Similarly,

the proof for M ≤ √
n is analogous to that given in Tsybakov (2003), with the only

difference that the functions fj should be chosen as in (A.10) and ‖ · ‖ should be

replaced by ‖ · ‖n.

The (L) aggregation case. Let HM = RM and ψn,M = M/n. Define the functions

fj(x) = γI{x=Xj}, j = 1, . . . , M, with 0 < γ ≤ L and introduce a finite set of

their linear combinations

(A.13) U =
{

g =
M∑

j=1

ωjfj : ω ∈ Ω
}

,

where Ω is the set of all vectors ω ∈ RM with binary coordinates ωj ∈ {0, 1}.
Since the supports of fj ’s are disjoint, the functions g ∈ U are uniformly bounded

by γ, thus U ⊂ F0. Clearly, minλ∈RM ‖fλ − f‖2n = 0 for any f ∈ U . There-

fore, similarly to the (MS) case, it is sufficient to bound from below the quantity

supf∈U Efw(ψ−1
n,M‖Tn−f‖2n) where ψn,M = M/n, uniformly over all estimators Tn.

Note that for any g1 =
∑M

j=1 ωjfj ∈ U and g2 =
∑M

j=1 ω′jfj ∈ U we have

(A.14) ‖g1 − g2‖2n =
γ2

n

M∑

j=1

(ωj − ω′j)
2 ≤ γ2M/n.

Let first M ≥ 8. Then it follows from the Varshamov-Gilbert bound (see Gilbert

(1952) or Tsybakov (2004), Chapter 2) that there exists a subset C′ of U such that

card(U0) ≥ 2M/8 and

(A.15) ‖g1 − g2‖2n ≥ C1γ
2M/n.

for any g1, g2 ∈ C′. Using (A.9) and (A.14) we get, for any g1, g2 ∈ C′,

K(Pg1 ,Pg2) ≤ C2γ
2M ≤ C3γ

2 log(card(C′)),

and by choosing γ small enough, we can finish the proof in the same way as in

the (MS) case. If 2 ≤ M ≤ 8, we have ψn,M ≤ 8/n, and the proof is easily
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obtained by choosing f1 ≡ 0 and f2 ≡ γn−1/2 and applying Lemma A.1 to the set

C′ = {f1, f2}.

APPENDIX B: TECHNICAL LEMMAS

Lemma B.1. Let f, f1, . . . , fM ∈ F0 and 1 ≤ m ≤ M . Let C be the finite set of

functions defined in the proof of 3.5. Then (A.1) holds and

min
g∈C ‖g − f‖2n ≤ min

λ∈ΛM
‖fλ − f‖2n +

L2

m
.(B.1)

Proof. Let f∗ be a minimizer of ‖fλ − f‖2n over λ ∈ ΛM . Clearly, f∗ is of the

form

f∗ =
M∑

j=1

pjfj with pj ≥ 0 and
M∑

j=1

pj ≤ 1.

Define a probability distribution on j = 0, 1, . . . ,M by

πj =





pj if j 6= 0,

1−∑M
j=1 pj if j = 0.

Consider m i.i.d. random integers j1, . . . , jm where each jk is distributed according

to {πj} on {0, 1, . . . , M}. Introduce the random function

f̄m =
1
m

m∑

k=1

gjk

where

gj =





fj if j 6= 0,

0 if j = 0.

For every x ∈ X the random variables gj1(x), . . . , gjm(x) are i.i.d. with E(gjk
(x)) =

f∗(x). Thus,

E(f̄m(x)− f∗(x))2 = E




[
1
m

m∑

k=1

{gjk
(x)− E(gjk

(x))}
]2




≤ 1
m
E(g2

j1(x)) ≤ L2

m
.
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Hence for every x ∈ X and every f ∈ F0 we get

E(f̄m(x)− f(x))2 = E(f̄m(x)− f∗(x))2 + (f∗(x)− f(x))2(B.2)

≤ L2

m
+ (f∗(x)− f(x))2.

Integrating (B.2) over the empirical probability measure that puts mass 1/n at each

Xi, and recalling the definition of f∗ we obtain

E‖f̄m − f‖2n ≤ min
λ∈ΛM

‖fλ − f‖2n +
L2

m
.(B.3)

Finally, note that the random function f̄m takes its values in C, which implies that

E‖f̄m − f‖2n ≥ min
g∈C

‖g − f‖2n.

This and (B.3) prove (B.1).

Lemma B.2. Let Zd denote a random variable having the χ2 distribution with

d degrees of freedom. Then for all x > 0,

P{Zd − d ≥ x
√

2d} ≤ exp

(
− x2

2(1 + x
√

2/d)

)
.(B.4)

Proof. See Cavalier et al. (2002, page 857).
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[7] Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via penal-

ization. Probability Theory and Related Fields, 113: 301 – 413.

[8] Bartlett, P.L., Boucheron, S. and Lugosi, G. (2002). Model selection and error estimation.

Machine Learning 48: 85 – 113.
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