
Lectures on the ABC conjecture over function fields
C. Gasbarri

1 Introduction.

One of the main objectives in mathematics is solving algebraic equations. Given a
system of algebraic equations G(X) = 0 defined over a ring A, may we know if there are
solutions of it on A? and, in case, may we explicitly find them? Of course the prototype
of such a ring is Z or rings finite over it, but the theorem of Matiyasevich tells us that
we cannot find a general method to answer to the question in this situation.

Never the less one can try to see if it is possible to answer to the question for some
class of systems of algebraic equations.

Since long time we know that there is an interesting analogy between the ring Z and
the ring k[t] where k is a field:

– They are both principal ideal domains with Krull dimension one.
– In both rings a product formula holds: Over Z the product of the all the possible

absolute values of an element is one; over k[t] every rational functions has as many poles
as many zeroes on the projective line.

Essentially all the technics one can develop to study the system of polynomial equa-
tions over Z may be developed also for studying the same theory over k[t]. But on the
ring k[t] we can use a new tool: we can compute the derivative of a polynomial. Thus
one can hope that the study of the diophantine equations may be easier to solve over
k[t] then over Z. Consequently before we attack the theory of systems of polynomial
equations over Z, we can try to study the same theory over k[t]. In most of the cases,
a statement which is false in the theory of polynomial equations over k[t] is also false
(often for the same reasons) in the theory over Z.

Of course over k[t] we can use all the strength of the algebraic and analytic geometries.
In these notes we will overview some of the known results and technics used in the

theory of the polynomial equations over k[t]. Essentially nothing is original, up perhaps
the mistakes, the inaccuracies and the choice of the presentation.

Instead of studying systems of polynomial equations over k[t] we will begin by study-
ing the same problem over its field of fractions F := k(t). Given a system of polynomial
equations G(X) = 0, say in n variables over F , we can see the set of its solution as an
affine variety X. As it is customary in algebraic geometry, we can compactify this affine
variety to obtain a projective variety X. Moreover, since G(X) has its coefficients in F ,
we may consider it as a system of polynomial equations in the variables (t,X) and look
its set of zeroes as an affine variety X defined over k. The variety X is equipped with a
rational map to the affine line A1

k given by the projection (t,X) → t. We will see that
the morphism X → A1

k and its compactifications will be a main tool in the subject.
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In the first part of these notes we will try to translate the problem we are interested in,
in terms of algebraic geometry. We will see, how the derivative will play an interesting
role. Then we will introduce the theory of heights: this is a machinery which is very
useful and it is essentially the classical intersection theory reinterpreted in the language
of arithmetic geometry.

Once we developed the language and the tools, we will introduce the main conjecture:
this is a conjecture due to Vojta and, a proof of it will allow to qualitatively solve all the
systems of polynomial equations. In the simpler case it is the classical ABC theorem
proved by Mason.

Using the analogy between the number fields arithmetic and the function fields arith-
metic we can translate the ABC conjecture in the arithmetic contest. In this case the
ABC conjecture is widely open even in the simplest case. Let’s state it:

1.1 Conjecture. Let ε > 0, then there exists a constant C(ε) for which the following

holds: Let a, b and c three integral numbers such that (a, b) = 1 and a + b = c then

max{|a|, |b|, |c|} ≤ C(ε)


 ∏

p/abc

p




1+ε

where the product is taken over all the prime numbers dividing abc.

Once one state the conjecture in an algebro geometric language and generalize it to
an arbitrary curve it becomes:

1.2 Conjecture. Let ε > 0, and K be a number field, π : X → Spec(OK) a regular

arithmetic surface and D ↪→ X an effective divisor on X. Denote by KX/OK
the relative

dualizing sheaf. Then there exists a constant C := C(X, ε, D) for which the following

holds: let L be a finite extension of K and P : Spec(OL) → X, not contained in D,

then

hKX/OK
(D)(P ) ≤ (1 + ε)(N (1)

D (P ) + log |∆L|) + C[L : K]

where hKX/OK
(D)(P ) is the height of P with respect to KX/OK

(D) and ∆L is the

relative discriminant.

One should compare this conjecture with the conjecture 6.2.
We will provide some different approaches to the ABC conjecture 6.2 in the function

fields case. Approaches developed essentially by Vojta, Moriwaki, Kim, McQuillan and
others. We will concentrate our attention to the case of curves. In this case we will
see that analytic tools will essentially completely solve the conjecture. Since one would
like to translate the methods in the arithmetic context (over Z) we would be interested
in a purely algebraic proof of it. Thus we will see what we can obtain in this case
and, and we will see some counterexamples in positive characteristic. The existence of
these counterexamples shows that it is impossible to find an algebraic proof of the ABC

conjecture which is independent on the characteristic.
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We tried to keep these notes as self contained as possible. We suppose that the
reader is acquainted with a standard text in algebraic geometry (for instance [Ha])
Unfortunately we did not completely succeed on this: the last sections require a little
bit more of background. We tried nevertheless to recall the properties of the objects we
use.

2 Rational points, models and integral points.

Let k be an algebraically closed field and B be a smooth projective curve over it. In
the sequel we will denote by F the field k(B).

Unless it is expressively declared, we will suppose from now on that k is of charac-
teristic zero.

The field B is a non algebraically closed field. We would like to study the geometry
and the arithmetic of varieties defined over it.

Let f : XF → S := Spec(F ) be a variety defined over F .
If L/F is a finite extension, we will denote by XF (L) the set of L–rational points of

XF .

2.1 What is a rational point?. In arithmetic geometry we are interested on study the
set XF (F ) of F rational points of XF . More generally, suppose that L/F is a finite
extension, we are interested on the study of XF (L) of L rational point of XF .

First of all we would like to understand more geometrically what is a rational point.

2.1 Example. Let F = k(t) and XF be the line {X + tY + tZ = 0} ⊂ P2. Then the
point [0 : 1 : −1] is a rational point of XF . But also [−t; 1; 0] is a rational point of XF .

In the example above we see that the two points on the variety XF are of different
nature: the first one has coordinates in the small field k and the second had coordinates
over the field F . Also notice that, in order to define the points and the curve, we used
coordinates (thus an embedding inside a projective plane). We want give a geometric
definition of rational point, which do not depend on the coordinates and that is intrinsic.

We make another example:

2.2 Example. Let k be any field. Let X be the variety A1
k := Spec(k[t]). A k rational

point on X is simply an element a ∈ k. It correspond to the maximal ideal (t−a) ⊂ k[t].
It also corresponds to a k–morphism k[t] → k. And it also corresponds to a k–morphism
a : Spec(k) → X.

In general we see that the example above generalize to any affine variety: If A is a
k algebra and X = Spec(A); Suppose that X ⊂ AN

k . A point (a1, . . . , aN ) of AN
k with

coordinates in k which is contained in X corresponds to a maximal ideal ma ⊂ A such
that A/ma ' k; thus:
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There is a bijection between k–rational points of X and morphisms of k-schemes
Spec(k) → X.

From this observation, it is natural to give the following definition:

2.3 Definition. Let F be a field and f : XF → Spec(F ) be a F–variety. A F–rational

point of XF is a morphism of F–Schemes

P : Spec(F ) −→ XF .

The set of F–rational points of XF is denoted XF (F ).

2.4 Remark. Observe that, if L/K is a field extension and XF is a variety defined
over F , denoting XL the L–variety XF ×F Spec(L), we have that

XF (F ) ⊆ XL(L).

(prove this by exercise).

2.6 Models of varieties. At the beginning of this section we used an intuitive argument
using specified values of parameters. In this subsection we would like to formalize this.
A variety X over, for instance, the field F = k(t), is defined by some equations where the
coefficients are elements of F . If we consider the constant t as a variable, the equations
defining X define a variety over k. This variety will be a model of X.

2.6 Example. Consider the X curve over field k(t) defined by the equation y2 =
x3 + t2. We may consider t as a variable and associate to X the surface X defined over
k defined by the same equation (the variables will be x, y and t). The surface X has
a k–morphism f : X → A1; sending (x; y; t) to t. Each time we fix a point t0 ∈ A1 we
may look to the fibre of f over t0; it will be the k–curve Xt0 := {y2 = x3 + t20}. Observe
that the curve Xt0 is smooth if t0 6= 0 and singular if t0 = 0. Observe also that the
surface X is singular exactly where the curve X0 is singular. If we blow up the singular
point and then we blow up once again the singular point of the strict transform of X be
obtain a smooth surface X̃ . This is another model of X. Observe that this model has
again a map over A1 but this time the fibre over 0 is a reducible curve.

On the other side if you consider the curve Y 2 = X3 + t, we the model we associate
to it is a smooth surface but the fibre over 0 remains singular.

We fix our function field in one variable F over k. Let XF be a variety over F . A
model of XF over k will be a k variety which generalize the example above. We will see
that the models are not unique and we will study the relations between them. As the
example above shows, there are models which are better then others (for instance they
are smooth k–varieties if XF is smooth).
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Recall that F is the field k(B) where B is a smooth projective curve over k. The
field F is equipped with a map of k–schemes η : Spec(F ) → B. The image is a point
everywhere dense called the generic point of B.

2.7 Definition. Let f : XF → Spec(F ) be a variety. A model of XF over B is a

k–variety X equipped with a flat surjective map of k varieties g : X → B and such that

XF = X ×B Spec(F ); in other words the following diagram is cartesian:

XF −→ X
f

y
yg

Spec(F )
η−→ B

2.8 Main properties of the models.

(a) by definition, XF is the fibre over the generic point of B. Since η is dense in B,
we have that the image of XF in X is dense.

(b) Let F (XB) be the fraction field of XF , then F (XF ) = k(X ) (prove it by exercise)
(c) Let p ∈ B be a closed point and Y ⊂ X be a subvariety contained in the fibre

over p; Let X̃ → X be the blow up of Y ; then X̃ is another model of XF .
(d) More generally prove the following fact:

2.8 Proposition. Let X be a k variety with an isomorphism of fields F (XF ) ' k(X )
then, there is a variety X̃ birational to X with a flat surjective map X̃ → B which is a

model of XF .

(e) A natural model for the projective space Pn
F is the product B ×k Pn

k .
(f) Suppose that XF is projective, an easy (but not always good) way to construct a

model of XF is the following:
Embed XF ↪→ PN

F . Consider the model of PN
F constructed in (e) and take the Zariski

closure of XF inside it. The Zariski closure X ↪→ B ×k PN
k is then a model of XF .

(g) Other natural models of PN
F are constructed as follows: Let E be a vector bundle

of rank N + 1 over B, then P(E) → B is a smooth projective model of PN
F ; of course

we can apply (f) to this situation and construct in this way other models of projective
XF .

(h) Suppose that R is a k–scheme such that k(R) = F . Typical examples R are affine
open sets of B or the spectra of local rings of closed points of B. As before we have a
natural map η : Spec(F ) → R. We can generalize the notion of model to R: It will be a
faithfully flat R–scheme XR → R such that XF ' XR ×R Spec(F ). In this case we will
say that XR is a model of XF over R.

(i) Suppose that X is a model of XF over, say B. Let p0 : Spec(k) → B be a closed
point. Then we may consider the k–variety XP0 := X ×B p0. This construction is the
formal version of the argument of ”specializing the parameters” used at the beginning
of this section.
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(j) Suppose that h : B′ → B is a finite covering of curves. Let F ′ be the field of
functions of B′ (it is a finite extension of F ). Let X → B be a model of XF . Let XF ′

be the F ′–variety XF ×F Spec(F ′). Then X ′ =: X ×B B′ is a model of XF ′ over F ′.
Warning: even if X is a k–smooth variety, in general X ′ will not be a smooth variety.

(k) By the theorem of resolution of singularities (We suppose to be in characteristic
zero), every projective variety XF over F has a model which is a smooth k–variety.

(l) Suppose that XF is smooth. From now on we will always suppose that the models
of it are normal. Observe that every model is dominated by a normal model.

(m) The following terminology will be useful in the sequel:

2.9 Definition. Given an object A defined over X (a vector bundle, a subvariety, a

cycle...), we will denote by Aη its restriction to XF via η; the corresponding object Aη

over the generic fibre, is called the restriction to the generic fibre of A.

2.11 Models and rational points. We would like to understand the relations between
models and rational points. We show now that, if we are in presence of a projective
variety XF over the function field F , the F rational points of XF may be describe even
more geometrically in terms of models and morphisms of k–varieties. Let f : XF →
Spec(F ) be a smooth projective variety over F .

We want to study an easy case first.
Suppose that XF is a trivial variety; thus there is a k curve X0 and an isomorphism

XF ' X0 ×k Spec(F ). A natural model for XF is then p : X0 ×B → B. Each time we
have a k–morphism of curves P : B → X0, we can look to its graph ΓP : B → X0×k B.

The restriction of ΓP to the generic point Spec(F ) of B give rise to a point PF ∈
XF (F ).

Thus we get an inclusion Homk(B; X0) ⊆ XF (F ). Since X0 is projective, this
inclusion is indeed an equality:

2.11 Proposition. If X0 is projective then Homk(B; X0) = XF (F ).

Proof: We need to prove that any point p ∈ XF (F ) comes from a morphism P : B → X0.
We first do the case when X0 = PN . Fix coordinates on PN

k . A rational point p ∈ PN (F )
corresponds to N + 1 rational functions [f0; . . . ; fN ] up to a non trivial scalar factor.
By definition [f0; . . . ; fN ] defines a morphism from an affine open set of B to PN . Since
B is smooth, this extends to a morphism from B to PN .

2.12 Exercise. In the proof of the proposition above we used the following fact: Let
B be a smooth projective curve and U be a Zariski open set of it. Let f : U → PN be
a morphism. Then f extends to a morphism f ′ : B → PN . Prove it.

The general case is a consequence of the case of PN and the Lemma below.
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2.13 Lemma. Let f : X → B be a model of XF . Suppose that X is a smooth k–

variety. Then the morphism f : X → B can be factorized as f = p◦i with i : X → PN×B

a closed immersion and p : PN ×B → B is the second projection.

Proof: Since X is projective over k; we can embed it inside some projective space
ιX → Pn. The map i := (ι; f) : X → PN ×B has the searched properties.

The lemma above is useful because it will reduce the verification of many properties
to the ”easy” case of PN

F with the corresponding trivial model. Observe that X is a
closed subvariety of PN × B. This is a special case of property (e) of 2.8. One should
notice the following difference: here we started with a model X and then we constructed
the embedding; in (e) of 2.8 we made the converse.

It is important to notice that the same proof applies in the general case:

2.14 Theorem. Let XF be a projective variety over F and f : X → B be a projective

model of it. Then there is a bijection:

{Points p ∈ XF (F )} ←→ {k −morphisms P : B → X s.t. f ◦ P = Id} .

The theorem above give a geometric interpretation of F rational points of a projective
variety: they correspond to k morphisms of the projective curve B to a model of the
variety which composed with the structural morphism are the identity.

2.15 Remark. Observe that a rational point is the generic fibre of a section.

The following example shows that the hypothesis of projectiveness is essential.

2.16 Example. Let F := k(t). The corresponding curve is P1
k. Consider the variety

XF := A1
F . Consider the point p ∈ XF (F ) with coordinate t. This point do not extend

to a morphism P : P1
k → P1

k ×A1
k. Indeed such a point will give a non trivial morphism

from P1
k to A1

k and this is impossible.

2.18 Integral points. One of the main subjects of diophantine geometry, is the study
of diophantine equations:

2.18 Example. Suppose that R = k[t] and consider the equation

f(X) := Xn + an−1X
n−1 + . . . a0 = 0 (2.18.1)

with ai ∈ R. We may ask if there are solutions in R to such an equation. Observe
that, since R is a normal ring, every solution of 2.18.1 which is in k(t) is actually in
R. Thus a solution of 2.18.1 is a factor of the polynomial a0(t). Consequently, up to
the problem of factorizing a0(t), we can explicitly solve an equation of type ”monic
polynomial equal to zero”. Observe that if f(X) is not monic, the problem is already
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harder. The reader may try to find a procedure to find the solutions in R of an equation
of the kind f(X) = 0 with f non monic.

If we consider systems of equations in more then one variable, the problem is more
complicated and algebraic geometry helps. Before we start to deal with this problem
we have to understand what a solution of an equation is.

In the example above, we were interested in solutions in R = k[t] of a monic equation.
Incidentally, due to the normality of R we could look for the solutions in the field k(t)
which coincide with the solutions in R. When the polynomial is not monic, there may
be solutions in k(t) which are not in R.

2.20 Example. Let 



F1(t,X1, . . . , Xn) = 0
...

Fm(t, X1, . . . , Xn) = 0

(2.20.1)

with Fi(t,X1, . . . , Xn) ∈ k[t][X1, . . . , Xn], be a system of polynomial equations. An in-
tegral solution of 2.20.1 is a n–uple (f1(t), . . . , fn(t)) such that Fi(t, f1(t), . . . , fn(t)) =
0 for every i. Consider the ideal I := (F1(t,X1, . . . , Xn), . . . , Fm(t,X1, . . . , Xn)) ⊂
k[t][X1, . . . , Xn]. We can associate to an integral solution of 2.20.1 a morphism P :
k[t][X1, . . . , Xn]/I → k[t], thus a morphism of schemes A1

k → Spec(k[t][X1, . . . , Xn]/I).
Conversely for every such a morphism we can construct an integral solution of 2.20.1.
Observe that, via the natural inclusion k[t] ↪→ k[t][X1, . . . , Xn] and the projection
k[t][X1, . . . , Xn] →→ k[t][X1, . . . , Xn]/I, the scheme Spec(k[t][X1, . . . , Xn]/I) is naturally
a scheme over Spec(k[t]) and the morphism P is a section of the structural morphism.

We see that the example above is very similar to the interpretation of the rational
points of a variety defined over a function field given in the previous section. We simply
changed Spec(k(t)) with Spec(k[t]). It is natural then to expect an interpretation of the
integral solutions in terms of sections and models.

With this in mind we can give the following

2.22 Definition. Let U be a scheme and f : X → U be a U–scheme. A U–integral

point of X is a morphism p : U → X such that f ◦ p = Id. The set of the U–integral

points of X is denoted by X (U).

2.23 Remark. (a) If U = Spec(F ) then a U integral point of X is a F–rational point
of X .

(b) The case we are interested in is when U is an open set of a smooth projective
curve B. For instance in the example 2.20, U is an open set of B = P1

k. From now on,
we suppose that U is a regular scheme of dimension at most one. In this case S := B \U

is a divisor and we speak about S–integral points.
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(c) Let η : Spec(F ) → U be the generic point of U . Then the restriction XF of X to
Spec(F ) is a F–variety. The restriction to F of a U integral point of X give rise to a
F–rational point. Thus we get an inclusion X (U) ⊆ XF (F ).

(d) Suppose that f : X → U is a projective morphism, then 2.14 tells us that the
inclusion X (U) ⊆ XF (F ) is in fact a bijection.

(e) The following example is important: Suppose that U = A1
k \ {a1, . . . , an}. An

U–integral point of AN is a N–uple (f1(t), . . . , fN (t)), where fi(t) ∈ k(t) are such that
the denominators of them are divisible only by (t− aj). Thus an U–integral point is a
F := k(t)–rational point with ”controlled” denominator.

Let F and B as before and U ⊆ B be a Zariski open set. Denote S := B \ U .
Consider X = AN

F , then X ⊂ PN and PN \ AN is the divisor at infinity H∞. Of
course X := AN × B and PN × B are models of AN

F and PN
F . Observe that AN × B =

PN ×B \H∞ ×B and H∞ ×B, which is a divisor in PN ×B, is a model of H∞,F .
Let P : U → X be an U integral point. It corresponds to an algebraic point p ∈

PN (F ) thus to a map P : B → PN × B. Since the image of U is contained in X ,
we have that P ∗(H∞ × B is an effective divisor on B with support contained in S.
Also the converse is true: if p ∈ PN (F ) is a point for which the corresponding section
P : B → PN × B is such that P ∗(H∞ × B) is a divisor with support contained in S,
then p is an U integral point of X .

2.24 Example. Suppose that F = k(t), B = P1 and U = A1; thus S = [1 : 0]. A
point P of P1

F (F ) is a couple of homogeneous polynomials [f1(x; y) : f2(x; y)] having
the same degree and no common factors. Suppose that P is an U integral point. By
construction P ∗(H∞ × B) is the set of zeros of f2(x, y); thus P is an integral point if
and only if f2(x; y) = yn; consequently P is nothing else then the choice of a polynomial
as explained in the definition 2.22.

With this in mind the definition below become clear: Let f : X → B be a flat
projective morphism. Let D ↪→ X be an effective divisor.

2.25 Definition. An (D;S)–integral point of X is a point p ∈ (XF )(F ) such that,

denoting by P : B → X the corresponding section, we have that P ∗(D) is an effective

divisor with support contained in S.

Of course, if we take Y = X \D, a (D, S) integral point of X is a U–integral point of
Y.

We can give, without pain, variations of the definition above in the case of algebraic
points. For instance

2.26 Definition. Let L/F be a finite extension and BL the corresponding curve. Let

SL be a closed set of BL. A L point p ∈ XF (L) is an (D, SL)–integral point if, denoting

by P : BL → X the map corresponding to p, we have that Supp(P ∗(D)) ⊂ S.
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As one can see the definition of (D, S) integral point is something which depends on
the model of the variety defined over F and not only on the variety itself. Never the
less we have the following

2.27 Proposition. Suppose that X and D are as before. Let h : X ′ → X be a

birational morphism and D′ := h∗(D) then the set of (D; S)–integral points and (D′;S)–
integral points coincide.

The proof is left as exercise.

2.28 Remark. If we take S = ∅, then (D, ∅)–integral points are points whose cor-
responding section do not intersects D. If we take D = ∅, then (∅, S) points are just
F–rational points of XF . Thus the study of F–rational (or more generally L–rational)
points is just a particular case of the study of (D, S) integral points.

3 The Kodaira Spencer class.

We will denote by XL be the variety XF , seen as a variety defined over L: by
definition XL := XF ×Spec(F ) Spec(L).

Within the varieties defined over F there are the varieties defined over k seen as
varieties defined over F : if Xk → Spec(k) is a variety, then Xk ×Spec(k) Spec(F ) →
Spec(F ) is a variety defined over F . We will call such a variety a k–trivial variety.

Of course for this kind of varieties many questions have an easy answer or may be
reduced to classical questions of algebraic geometry. For instance, since Xk(k) ⊆ XF (F )
thus XF (F ) is always infinite.

3.1 Exercise. Prove that Xk(k) is a subset of XF (F ).

There are varieties which are not k–trivial, but they become trivial after isomorphism
or after a base change.

3.2 Example. Let F = k(t). It is the field of fractions of P1. Consider the Curve
C := {Y 2 = X3 + t}. A priori it looks as a curve which is not defined over k but:
consider the extension L := F [t1/2, t1/3]; over L the change of variables X = t1/3X1

and Y = t1/2Y1 give rise to an isomorphism of C with the curve Y 2
1 = X3

1 + 1 which is
defined over k.

3.3 Example. Again F = k(t) and XF = {(X +tY )4+Y 4 = 1}. Observe that XF (F )
is an infinite set; indeed for every couple (a, b) ∈ k2 such that a4 + b4 = 1 (there are
infinitely many because k is algebraically closed), the couple (a − tb, b) defines a point
of XF .
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For this reason we give the following definition:

3.4 Definition. Let XF be a variety defined over F . We will say that it is isotrivial if

there exists a variety Xk defined over k, a finite extension L of F and an L isomorphism

XL ' Xk ×Spec(k) Spec(L).

Thus a variety is isotrivial if it is a trivial variety when we see it over the algebraic
closure of F .

One would like to give some geometrical way to know if the variety is or not isotrivial.
Observe that, a variety defined over F is, roughly speaking a system of of polynomial

equations where the coefficients of the polynomials are in F . Thus each coefficient may
be seen as a function in some variables. If we give to each variable a value in k, we
obtain a variety over k. For instance if F = k(t) and XF = {(X + tY )4 + Y 4 = 1},
for each value of t ∈ k we obtain a plane curve defined over k. Each time we specify
the value of t, we obtain a quadric plane curve Xt; but the morphism X = X1 − tY1,
Y = Y1 induces an isomorphism of Xt with the curve X4

1 + Y 4
1 = 1.

This can generalized to any isotrivial variety. Suppose that XF is a k–trivial curve,
then Xk ' Xk ×Spec(k) Spec(F ). Thus every time we give specific values to the variable
t, we obtain a k variety which is indeed isomorphic to Xk. Of course this argument may
be generalized to any field F .

3.5 Exercise. Prove that, for every a ∈ k∗, the curves Y 2 = X3 +a are all isomorphic
between them.

Thus we understand the following:

Isotrivial varieties are varieties defined over F which do not move in moduli when
we specify the parameters.

We recall that, since F is a field of transcendence degree one over k, we may find an
element t ∈ F which is transcendental over k. Every other element of F is algebraic
over k(t).

3.6 The Kähler differentials. Let’s recall the definition of the module of Kähler differ-
entials Ω1

F/k of F over K. It is a vector space over F of dimension one generated by the
symbol dt. We have a differential map:

d : F −→ Ω1
F/k

defined in the following way: d(t) = dt; if f ∈ F and G(X) :=
∑

ai(t)Xi is the minimal
polynomial of f over k(t) then define

d(f) =:
−∑

a′i(t)f
i

∑
iai(t)f i−1

dt.

11



Where if a(t) ∈ k(t) then a′(t) := d
dt · a(t).

3.6 Exercise. Prove that:
– d is well posed (do not depend on the choices);
– d is k–linear;
– If f, g ∈ F then d(fg) = fd(g) + gd(f);
– If M is a F–vector space and h : F → M is a k–linear map such that h(fg) =

fh(g)+gh(f) then there exists a unique F–linear map h̃ : Ω1
F/k → M such that h = h̃◦d.

More generally, we recall from [Ha] the properties of the Kähler differentials of a
scheme.

Let S be a scheme. Let p : X → S be a S–scheme. Let M be a quasi coherent sheaf
over X. A S–derivation is a OS–linear morphism of sheaves

ψ : OX −→ M

such that ψ(ab) = aψ(b) + bψ(a) (Liebnitz rule).

3.7 Definition. There exists a quasicoherent sheaf Ω1
X/S , called the sheaf of Kähler

differentials of X over S, with the following properties:

(a) There is a S–derivation

d : OX −→ Ω1
X/S ;

(b) For every S–derivation ψ : OX → M there exist a OX–linear map dψ : Ω1
X/S → M

such that ψ = dψ ◦ d.

It is easy to prove that such a sheaf of Kähler differentials is unique up to isomor-
phism.

We will recall now the main properties of the Kähler differentials, the proofs may be
found in [Ha] and [Ma] (or the reader may try to prove them, at least in some particular
cases by exercise).

3.8 Theorem. Let X, Y and S be schemes.

(a) (First fundamental exact sequence) Suppose we have a sequence of morphisms

Y
f→ X → S, then there is an exact sequence

f∗(Ω1
X/S) −→ Ω1

Y/S −→ Ω1
Y/X → 0.

(b)(Second fundamental exact sequence) Suppose that, in the hypotheses of (a), the

morphism f : Y → X is a closed immersion, Let IY be the ideal sheaf of Y in X then

there is an exact sequence on Y

IY /I2
Y

dY−→ f∗(Ω1
X/S) −→ Ω1

Y/S → 0;

where dY is defined as follows: let f̃ ∈ IY /I2
Y
, lift it to an element f in IY , then dY (f̃)

is the image in f∗(Ω1
X/S) of d(f).

12



Observe that in (b), IY /I2
Y

has naturally a structure of OY module.

3.10 Examples and properties of relative differentials.

(a) Ω1
X/X = 0.

(b) It is easy to see that, if U
i

↪→ X is a open immersion then, i∗(Ω1
X/S) = Ω1

U/S .
(c) Let X = A1

k := Spec(k[t]) then Ω1
X/k = OX · dt and, for every f(t) ∈ k[t] we have

d(f) = f ′(t)dt.
(d) More generally, if X = An

k := Spec(k[t1, . . . , tn] then Ω1
X/k = OX ·dt1⊕. . .OX ·dtn;

for every f ∈ k[t1, . . . , tn] we have that d(f) =
∑

i
∂f
∂ti

dti.
(e) Yet more generally, Let X1 and X2 be two S–schemes; let Z := X1 ×S X2, then

Ω1
Z/S = p∗1(Ω

1
X1/S)⊕ p∗2(Ω

1
X2/S), pi : Z → Xi being the projections.

(f) Suppose that X := {F = 0} ⊂ A2
k, is an affine plane curve, then by the second

fundamental sequence,

Ω1
X/k = OXdt1 ⊕OXdt2/(Ft1dt1 + Ft2dt2)

where Fti := ∂F
∂ti

. In particular observe that, if p ∈ X is a point where at least one
of the partial derivatives of F do not vanishes (a smooth point) then the restriction of
Ω1

X/k to a neighborhood of p is free.
(g) One can show that X is a smooth k scheme if and only if Ω1

X/k is locally free. If
X is a k variety (it is locally of finite type) then Ω1

X/k is of rank dim(X).
(h) The sheaf IY /I2

Y
is called the conormal sheaf of Y in X. Suppose that X = A2

and Y = {t1 = 0}, then one easily see that IY /I2
Y

is the free sheaf generated by dt1,
while Ω1

Y/k is the free sheaf generated by dt2. Thus one can see the conormal sheaf as
the sheaf of the infinitesimal displacements which are orthogonal to Y . Consequently,
a global section of it will be an infinitesimal deformation of Y inside X.

(i) If X = Spec(F ) where F is a field of transcendence degree n over k, then Ω1
X/k

is free of rank n and if t1, . . . , tn is a transcendence basis of F over k, then a basis of
Ω1

X/k is {dt1, . . . , dtn}.
(j) Differentials commute to base change: Suppose we have a cartesian diagram

Z
f−→ X

↓ ↓
S′ −→ S;

where Z = X ×S S′; then
Ω1

Z/S′ = f∗(Ω1
X/S .

(k) Suppose that f : X → S is a smooth morphism. Then, by (g), Ω1
X/S is locally

free.

3.10 Definition. The dual T 1
X/S := HomOX (Ω1

X/S ;OX) is called the relative tangent

13



bundle of X over S. A local section δ ∈ Γ(U, T 1
X/S) is, by definition a S–linear morphism

δ : OU → OU such that δ(ab) = aδ(b) + bδ(a) and it is called a derivation of X over S.

3.12 . Let XF → Spec(F ) be a variety defined over F . Via the composition XF →
Spec(F ) → Spec(k), we may also see XF as as scheme over k. Suppose from, from now
on, that XF is a smooth F–variety (this hypothesis is here just to simplify, many things
may be done in a much general situation); by property (g) above, Ω1

XF /F is locally free
of rank dim(XF ).

Let η → XF be the generic point of XF . The residue field of η is a field of tran-
scendence degree dim(XF ) over F , thus it is of transcendence degree dim(XF ) + 1 over
k.

Since the composite of smooth morphisms is smooth, XF is also a smooth k scheme
(not of finite type in general), thus Ω1

XF /k is locally free. By property (j), it is locally
free of rank dim(X) + 1.

What we just remarked plus the first fundamental exact sequence allows to prove:

3.12 Theorem. Let F be a field of transcendence 1 over k. Let f : XK → Spec(F )
be a smooth F variety. Then, over XF there is an exact sequence of locally free sheaves

0 → f∗(Ω1
F/k) −→ Ω1

XF /k −→ Ω1
XF /F → 0 (3.12.1)

Observe that:
(a) If t is a transcendence basis of F over k, then f∗(Ω1

F/k) is free generated by dt.
The tangent bundle of Spec(F ) over k is generated by an element δ such that δ(t) = 1;
let a ∈ F ; and F (X; Y ) ∈ k[X;Y ] is the mininal polynomial such that F (a, t) = 0 then
δ(a) = −FY (a,t)

FX(a,t) .

3.14 Exercise. check that the definition make sense.

(b) The exact sequence is exact on the left because f∗(Ω1
F/k) is free of rank one and

Ω1
XF /k is locally free.
(c) The tangent bundle of Spec(F ) over k is a F–vector space of dimension one

generated by d
dt .

The exact sequence defined in theorem 3.12 is one of the fundamental tools used in
the study of the arithmetic of varieties defined over function fields (we hope that the
reader will be convinced of this at the end of these lectures). In some way it must
be seen as a canonical object attached to XF seen as a variety defined over a field of
functions.

Thus we give the following definition:

3.15 Definition. Suppose that f : XF → Spec(F ) is a smooth variety. Then the exact

sequence 3.12.1 defines an element K(f) in Ext1(Ω1
XF /F ; f∗(Ω1

F/k)). This element is

called the Kodaira Spencer class of XF over F .

14



3.16 Remark. Observe that the Kodaira Spencer class of PN
F is zero.

3.17 Remark. (very important) If XF is projective, then Ext1(Ω1
XF /F ;OXF

) is
canonically isomorphic to the F finite dimensional vector space H1(XF ; f∗(Ω1

F/k) ⊗
(Ω1

X/F )∨); thus the Kodaira Spencer class may be seen as:
(a) Either an element K(f) ∈ H1(XF ; f∗(Ω1

F/k)⊗ (Ω1
X/F )∨);

(b) or as a linear map of F vector spaces K(f) : (Ω1
F/k)∨ → H1(XF ; (Ω1

X/F )∨).

We will see that the Kodaira Spencer class of a variety over F measure the non
isotriviality of the variety. It will be a cohomological invariant which vanishes if and
only if the variety is isotrivial. Let’s see some properties of the Kodaira Spencer class.

We start with a smooth projective variety f : XF → Spec(F ). Denote by K(f) ∈
H1(XF ; f∗(Ω1

F/k)⊗ (Ω1
X/F )∨) the Kodaira Spencer class of XF over F .

3.19 k–trivial varieties. Suppose that XF is a k–trivial variety, then K(f) = 0.
Indeed, there is a k–variety Xk and an isomorphism XF ' Xk⊗k Spec(F ). Thus, by

property (e), Ω1
XF /k = p∗1(Ω

1
Xk/k)⊕ p∗2(Ω

1
F/k) and by property (j), ΩXF /F = p∗1(Ω

1
Xk/k)

thus the exact sequence 3.12.1 split and consequently K(f) = 0.

3.20 Examples of non isotrivial varieties. To construct example of non isotrivial va-
rieties one needs to use in general some knowledge of algebraic geometry. Usually the
strategy is the following: one fix a smooth projective variety XF over a function field
F . We consider a model f : X → B of it. If XF is not isotrivial then, for general points
p1 and q1 in B, the fibres Xp1 and Xp2 are not isomorphic.

3.20 Example. Consider the elliptic curve E over F = k(t) given by the equation
Y 2 = X(X − 1)(X − t). One can verify that the j invariant of Ep depends on p so E is
not isotrivial.

3.21 Example. If C is a non hyperelliptic curve of genus three, then the map associ-
ated to the canonical linear system H0(C,KC) is an embedding of C in P2. The image
is a smooth curve of degree four. Any smooth curve of degree four in P2 is obtained in
this way. If C1 and C2 are two such curves, then any isomorphism between them give
rise to an isomorphism H0(C1,KC1) → H0(C2,KC2). This implies that two smooth
curves of degree four in P2 are isomorphic if and only if there is a linear isomorphism
of P2 sending one curve in the other. If C is a smooth curve of degree four, then the
curves isomorphic to it are given by its orbit under the action of PGL3 on P2. The
curves of degree four of P2 are classified by the projective space of dimension 14 and
the set of smooth curves is a open set inside it. and the group PGL3 has dimension
9. Consequently given a curve of degree four, the space of curves isomorphic to it has
dimension at most 9 thus we can find a curve of degree 4 which is not isomorphic to it.
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Take a line in P14 which is not contained in the orbit of a fixed curve. The corresponding
family of curves of genus three is not isotrivial.

A variation of this example, but which requires the knowledge of the theory of the
Hilbert schemes shows that there exists non isotrivial curves of any genus.

Being isotrivial is not a birational invariant of a variety. The following example
will show a non isotrivial surface birational to the projective plane (which is evidently
isotrivial).

3.22 Example. Let `1, . . . , `r be r > 4 general lines on P2
k. Each `i correspond to a

point Pi of P2(k(t)). Let X̃ → P2
k(t) be the surface obtained by blowing up these points.

We claim that X̃ is not isotrivial.
It is easy to see that the fibre over a general point of B of a model of X̃ is the blow

up of P2 on r points. Thus since the the lines are general, in order to prove that X̃ is
isotrivial, it suffices to prove the following:

3.22 Proposition. Let {p1, . . . , pr} and {q1, . . . qr} be two sets of points of P2; let X1

be the surface obtained blowing up all the pi’s and X2 be the surface obtained blowing

up all the qj ’s. Then X1 is isomorphic to X2 if and only if there is an element ϕ ∈ PGL3

such that ϕ({p1, . . . , pr}) = {q1, . . . qr}.
Proof: Of course if there exists such a ϕ then X1 is isomorphic to X2. Let’s prove the
converse.

Suppose that there exists such an isomorphism ϕ : X1 → X2. Denote by Ei the
exceptional divisors of X1, by Fj the exceptional divisors of X2, by H1 (resp. H2)
the pull back of the tautological bundle of P2 on X1 (resp. X2). If we show that,
ϕ∗(H2) = H1 and for every j there exists a i such that ϕ∗(Fj) = Ei we are done.

The canonical line bundle of X1 (resp. X2) is K1 = −3H1 +
∑

Ei (resp. K2 =
−3H2 +

∑
Fj).

Suppose that ϕ∗(H2) = dH1 +
∑

aiEi and ϕ∗(Fj) = mjH1 +
∑

i njiEi. Since ϕ is an
isomorphism, then ϕ∗(K2) = K1. Consequently, computations give:

∑
j mj = 3d − 3

and
∑

j nji = 1− ai.
Since (Fj ; H2) = 0 we obtain dmj −

∑
i njiai = 0. Summing up all the mj we obtain

∑

j

mj =
1
d

∑

j

∑

i

ainji

=
1
d

∑

i

ai

∑

j

nji

=
1
d

∑

i

ai(1− ai).

Consequently 3d(d− 1) =
∑

i ai − a2
i which gives d = 1 and ai = ±1 or ai = 0.
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Since we have (H2; H2) = 1, we have 1 − ∑
i a2

i = 0 thus ai = 0. Consequently
ϕ∗(H2) = H1. From the equality (H2; Fj) = 0 we obtain then mj = 0 and from the
equality (Fj ;Fj) = −1 we obtain −∑

i n2
ji = −1 thus the conclusion follows.

3.25 Base change. Suppose that L/F is a finite field extension. Since we are in
characteristic zero, Ω1

L/k = Ω1
F/k ⊗F L.

Consider the L variety fL : XL := XF ×F L → Spec(L). Its Kodaira Spencer Class
K(fL) is an element in H1(XL; f∗L(Ω1

L/k) ⊗ (Ω1
XL/L)∨). By cohomology of the base

change, this vector space is H1(XF ; f∗(Ω1
F/k) ⊗ (Ω1

X/F )∨) ⊗ L; then via the natural
inclusion H1(XF ; f∗(Ω1

F/k) ⊗ (Ω1
X/F )∨) ↪→ H1(XL; f∗L(Ω1

L/k) ⊗ (Ω1
XL/L)∨), we obtain

K(f) = K(fL).

3.25 Exercise. Prove this.

This means that the Kodaira Spencer class commutes to the base change of fields.
From 3.19 and 3.25 we get the important

3.26 Theorem. Suppose that f : XF → Spec(F ) is an isotrivial variety, then K(f) =
0.

The important fact is that also the converse is true: we will prove that a variety
is isotrivial if and only if its Kodaira Spencer class vanishes. This is very important
because it give us a specific object in a specific vector space which can tell us if the
variety is or not isotrivial.

3.27 Theorem. Suppose that g : Y → Spec(F ) is a smooth projective isotrivial
variety and h : Y → XF is a dominant F–morphism; then the Kodaira Spencer class of

XF vanishes: K(f) = 0.

3.28 Remark. The theorem above tells us essentially that if a variety over F is
dominated by a variety defined over k, then itself is defined over k (up to extensions).
Remark that we can develop a the theory of Kodaira Spencer class over fields of arbitrary
characteristic; but in positive characteristic there are some caveat; for instance the
theorem above is false

3.29 Exercise. (for the reader who knows positive characteristic) Let E1 and E2 be
two elliptic curves defined over a field of characteristic p > 0. Suppose that αp is a
subgroup of Ei. Consider the family...
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Proof: (Of 3.27) By 3.25 we may suppose that there is a projective k–variety Z and an
isomorphism Y ' Z ×k F . Over Y we have the following exact diagram:

0 → g∗(Ω1
F/k) −→ h∗(Ω1

XF /k) −→ h∗(Ω1
XF /F ) → 0

‖ ↓ ↓
0 → g∗(Ω1

F/k) −→ Ω1
Y/k −→ Ω1

Y/F → 0
↓ ↓

Ω1
Y/XF

= Ω1
Y/X

↓ ↓
0 0.

Where the first row is the pull back, via h, of the first exact sequence over X, the second
row is the first exact sequence over Y (which, by hypotheses is a split exact sequence);
the first column is the first exact sequence associated to the morphism h where we see
X and Y as k–schemes; the second column is the first exact sequence associated to the
morphism h where we see X and Y as F–schemes.

Observe that since XF is smooth, Ω1
XF /F is a locally free vector bundle; in particular

it is a flat OXF
–module. Thus the pull back to Y of an exact sequence of OXF

–modules
with cokernel Ω1

XF /F is again an exact sequence (if Ω1
XF /F was not flat, since a priori h

is not flat, the pull back of an exact sequence is just a complex). This implies that we
have a natural map h∗ : Ext1(Ω1

XF /F ; f∗(Ω1
F/k)) → Ext1(h∗(Ω1

XF /F ); f∗(Ω1
F/k)).

The diagram above shows that, the natural map

Ext1(Ω1
Y/F ; g∗(Ω1

F/k)) −→ Ext1(h∗(Ω1
X/F ); g∗(Ω1

F/k))

send the Kodaira–Spencer class K(h) to h∗(K(f)).
Thus the conclusion follows if we prove that the map

h∗ : H1(XF ; (Ω1
XF /F )∨ ⊗ f∗(Ω1

F/k)) −→ H1(Y ; h∗((Ω1
XF /F )∨ ⊗ f∗(Ω1

F/k)))

is injective.

3.30 Lemma. Let h : Y → X be a dominant map between smooth varieties over a

field of characteristic zero. Let E be a vector bundle over X. Then the natural map

h∗ : H1(X; E) −→ H1(Y ; h∗(E))

is injective.

Proof: Since X and Y are both projective, by Bertini theorem, we may take a sufficiently
generic hyperplane section of Y and thus we may suppose that h is a generically finite
morphism.

Since h is finite, we have that H1(Y ; h∗(E)) = H1(X;h∗(OY )⊗ E).
the natural map h∗ : H1(X;E) −→ H1(X;h∗(OY ) ⊗ E) is obtained by tensorizing
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by E the exact sequence

0 → OX −→ h∗(OY ) −→ B → 0

and taking the H1.
Since we are in characteristic zero, the trace map give a splitting of the exact sequence

above. The conclusion follows.

3.32 . Before we continue with properties of the Kodaira Spencer class we need to
understand the relations between the Kodaira Spencer Class and the models of a variety:

(a) Suppose that f : X → B is a model of XF , and suppose that X is a smooth k

variety. Then we have an exact sequence

0 → f∗(Ω1
B/k) −→ Ω1

X/k −→ Ω1
X/B → 0. (3.32.1)

By property (j) of differentials, the base change to Spec(F ) of this exact sequence, is
the exact sequence 3.12.1. Observe that, in general Ω1

X/B is not locally free.
(b) Suppose that XF is smooth and projective and that f : X → B is a model which

is a smooth projective k–variety. The exact sequence 3.32.1 is an extension to which we
can associate an element KX (f) ∈ H1(X ; (ΩX/B)∨ ⊗ f∗(Ω1

B/k)). The relation with the
Kodaira Spencer class of f : XF → Spec(F ) is the following:

The Leray spectral sequence associated to the morphism f : X → B give rise to an
exact sequence

0 → H1(B; f∗((ΩX/B)∨ ⊗ f∗(Ω1
B/k))) → H1(X ; (ΩX/B)∨ ⊗ f∗(Ω1

B/k)) →
→ H0(B; (ΩX/B)∨ ⊗ f∗(Ω1

B/k)) → 0.

Thus we may consider the image a of KX (f) in H0(B; (ΩX/B)∨ ⊗ f∗(Ω1
B/k)). Taking

the base change via the map η : Spec(F ) → B we deduce a morphism

α : H0(B; (ΩX/B)∨ ⊗ f∗(Ω1
B/k))⊗k F −→ H1(XF ; (Ω1

XF /F )∨ ⊗ f∗(Ω1
F/k))

Thus the image of a via this morphism is the Kodaira Spencer class K(f). Observe
that, since X and Spec(F ) are both flat over B, the map α is injective; thus the Kodaira
Spencer class of XF is zero if and only if it is zero KX (f). A similar property holds in
a situation as in (h) of the properties of models 2.8.

3.34 . We will prove now that if a curve defined over F has vanishing Kodaira Spencer
class, then it is isotrivial. The theorem holds for arbitrary smooth projective variety
but the proof is more involved. This part is freely inspired by the notes [Gi].

The theorem we want to prove is the following:

3.34 Theorem. Let f : XF → Spec(F ) be a smooth projective curve over F . Then

K(f) = 0 if and only if XF is isotrivial.
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Observe that:
(1) By remark 3.16 we may suppose that the genus of XF is at least one. We will

give details when the genus is a least two and explain what one have to do in the genus
one case.

(2) By 3.26 we need to prove that the vanishing of K(f) implies the isotriviality of
XF .

The idea of the proof is the following: Suppose that the Kodaira Spencer class
vanishes. If XF is isotrivial then every time we specify the parameters, we will find
always the same curve. This means that, we may fix a model of XF and a point of B

the fibre over which is smooth. That fibre will be the candidate for the isotrivial curve.
Call such a curve X0, we need to prove that, up to extension, XF is isomorphic to (X0)F .
We will show that the vanishing of the Kodaira Spencer class allows to construct such
an isomorphism by successive approximations.

Before we start the proof, we would like to explain it in terms of differential algebra.
The field F is equipped with the relative tangent bundle T 1

F/k, which is a vector space
of dimension one. If we fix a transcendence basis t of F over k, we can find a generator
d ∈ T 1

F/k. The function d : F → F is a k–derivation. An important observation is the
following:

3.35 Proposition. Let L be the kernel of d : F → F , then L = k.

Proof: It is clear that k ⊆ L. If F = k(t) then the proposition is clear. Suppose
that F is a finite extension of k(t). Let y ∈ L, there are polynomials ai(t) ∈ k[t] such
that

∑n
i=0 ai(t)yi = 0. We may suppose that the n–uple of positive integral numbers

(deg(a0(t)), . . . , deg(an(t))) is minimal between all the polynomials with that property.
Since d(y) = 0, we have that

∑n
i=0 d(ai(t))yi = 0 but since deg(d(ai(t)) = deg(ai(t)) if

and only if deg(ai(t)) = 0 the conclusion follows.

The proposition above tells us that we can recover k from F and the derivation on
it.

Suppose that f : XF → Spec(F ) is a curve of genus bigger or equal then two with
vanishing Kodaira–Spencer class. By definition the exact sequence

0 → T 1
XF /F −→ T 1

XF /k −→ f∗(T 1
F/k) → 0

is split. Thus the derivation d over F lifts to a global derivation over XF .
When we have a k algebra A equipped with a k derivation δ, we may consider the

subring A0 := {a ∈ A / δ(a) = 0} and we have a dominant morphism Spec(A) →
Spec(A0). This globalizes to k–schemes equipped with a global k derivation. Thus,
from XF and the global k–derivation on it, we may construct a k–curve X0 with a k

morphism XF → X0. We will prove that, up to taking a finite extension of F , the
morphism induces an isomorphism XF ' X0 ×k Spec(F ).

Observe that the non vanishing of the Kodaira–Spencer class, tells us exactly that
the derivation d do not lift to a global derivation on XF .
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Proof: (of 3.34) Let t be an element of F which is transcendental over k. Without loss
of generality we may suppose that there is a closed point p0 which is a simple zero of
t. The tangent bundle T 1

F/k is generated by a derivation d : F → F such that d(t) = 1.

Let OB,p0 be the local ring of p0 over B and let ÔB,p0 be its completion. Since t has
a simple zero in p0, the derivation d induces a k derivation d : OB,p0 → OB,p0 . The
derivation extends to a k–derivation d : ÔB,p0 → ÔB,p0 .

Fix a model f : X → B of the curve; up to changing t and p0 if necessary, we
may suppose that the fibre X0 := Xp0 is smooth. Consider the ÔB,p0–scheme X0 :=
X ×B Spec(ÔB,p0). We show now that it suffices to prove that X0 ' X0×k Spec(ÔB,p0).
Indeed, since XF has genus bigger then one, over the algebraic closure of F , the group
of its automorphism is finite. We may take a finite extension of F and suppose that
all the automorphisms of XF are defined over F . Consider the set IsomF (XF ;X0 ×k

Spec(F )) of the isomorphisms between XF and X0 defined over the algebraic closure of
F . This set, either it is empty or it has the same cardinality of Aut(XF ). If K is an
extension of the algebraic closure of F , denote by IsomK(XF ×K; X0 ×K) the set of
isomorphisms between XF ×K and X0×K defined over K. We have a natural inclusion
IsomF (XF ; X0×k Spec(F )) ↪→ IsomK(XF ×Spec(K);X0×k Spec(K)). Since they are
set of the same cardinality, the two sets coincide. Consequently, suppose that there is
an isomorphism of XF and X0 defined over the field of fraction of ÔB,p0 , then we can
find an isomorphism between them defined over a finite extension of F .

3.36 Remark. The reduction above is where we used the fact that the the genus of
the curve is bigger or equal then two. The same argument apply to a variety with finite
set of automorphisms. The general case is more involved (it requires the use of the so
called Artin Approximation theorem).

To prove the theorem we are reduced to prove the following:

3.37 Proposition. Let f : X → Spec(k[[t]]) be a smooth projective curve defined

over Spec(k[[t]]). Denote by X0 the special fibre of X (the fibre over the closed point).

Suppose that the Kodaira Spencer Class K(f) vanishes. Then there is an isomorphism

X ' X0 ×k Spec(k[[t]]).

Remark that, mutatis mutandis, we can naturally define a Kodaira Spencer class in
this contest.
Proof: Denote by kn the artinian ring k[[t]]/tn+1 and by Xn the scheme X ×Spec(k[[t]]) kn.
By induction on n we may suppose that there exists an isomorphism

in : Xn
'−→ X0 ×k kn;

and we will show that the vanishing of the Kodaira Spencer Class implies that there is
an isomorphism in+1 : Xn+1 ' X0 ×k kn+1 whose reduction mod(tn+1) is in.
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In order to prove this we need to introduce the formal flow of a vector field. Let’s
describe it in the affine context: Let A be a ring with a derivation δ (we work in
characteristic zero). Then the map

exp(δ) :A −→ A[[x]]

a −→
∞∑

n=0

δn(a)
n!

xn

is a ring homomorphism. This is due to the fact that, iterating the Leibnitz rule, we
obtain that

δn(ab) =
n∑

i=0

(
n

i

)
δi(a)δn−i(b).

Since the definition of exp(δ) is intrinsic, it globalizes to schemes: suppose that we
have a scheme X with a global derivation δ, then there is a formal flow

exp(δ) : X × Â0 −→ X

characterized by the fact that

d(exp(δ))(
d

dx
) = δ.

3.38 Exercise. Consider the maps h1 : X × Â0 × Â0 → X × Â0 and h2 : X × Â0 ×
Â0 → X × Â0 defined respectively as h1(a, x1, x2) := (a, x1 + x2) and h2(a, x1, x2) :=
(exp(a, x1), x2). Prove that exp(δ)(h1) = exp(δ)(h2).

The exercise above shows that the map exp(δ) is the analogue of the flow of a vector
field defined in differential geometry.

3.39 Proposition. Let X → Speck[[t]] be a k[[t]]–scheme. Suppose that X is equipped

with a global derivation δ extending the natural derivation d on k[[t]]. Denote by (̂X ) the

formal completion of X with respect to the ideal (t) and by X0 the k–scheme X ⊗k[[t]] k.

Then there is a canonical isomorphism

X̂ ' X0 ×k Spec(k[[t]]).

Proof: Suppose that A is a k[[t]] algebra equipped with a derivation δ extending the
natural derivation d of k[[t]], denote by Â the completion of A with respect to the ideal
(t). Denote by A0 the k–algebra A/(t) and by An the algebra A/(tn+1). Then, it suffices
to prove that there is a sequence of canonical compatible isomorphisms

An ' A0 ⊗k k[[t]]/(tn+1).
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Denote by φ the composite map

A
exp(δ)−→ A[[x]] −→ A0[[x]]

and by α the composite of φ with the reduction A0[[x]] → A0. Since exp(δ)(t) = t+x, we
have that φ(t) = x. Thus we obtain natural compatible maps φn : An → A0[[x]]/(xn+1).
It suffices to prove that each φn is an isomorphism. Of course φ0 is an isomorphism,
thus we may assume, by induction that φn−1 is an isomorphism. Denote by I the
ideal (t) of A and by J the ideal (x) of A0[[x]]. The map φn induces a map of A0–
modules ϕn : In/In+1 → Jn/Jn+1. It suffices to prove that, for every n, the map ϕn

is an isomorphism of A0 modules. Since the A0–modules In/In+1 and Jn/Jn+1 are
generated by the class of tn and xn respectively and φ(tn) = xn, the conclusion follows.

Thus we may conclude the proof of 3.37 as follows: Since the Kodaira Spencer class
of X vanishes, the derivation d on k[[t]] extends to a global derivation on X . Thus, by
proposition 3.39, there is an isomorphism

X̂ ' X0 ×k Spec(k[[t]]).

But since X is projective, by the formal GAGA, the isomorphism above is algebraic.
Consequently, the conclusion follows.

4 The theory of heights.

In this section we will describe the theory of heights over function fields. Indeed this
theory is only an interpretation of the intersection theory but one need to develop it in
a language appropriate for the arithmetic purposes. Our aim is to keep the language
and the methods very geometric but, in the meanwhile, to keep the analogy with the
number fields case in mind. The dictionary between height theory over number fields
and intersection theory over function fields is where the analogy number field/function
fields has the best success. One should notice that this is the starting point of an entire
theory: the Arakelov theory.

Heights theory over function fields is intersection theory over models. We want to
introduce now some measure of the complexity of an algebraic point of a variety defined
over a function field.

We start with a smooth projective variety XF defined over our function field F .
Denote by F the algebraic closure of F .

Let P ∈ XF (F ). First of all, we see that there exists a minimal finite extension L/F

such that P ∈ XF (L).

4.1 Definition. We will denote by F (P ) such extension and by [F (P ) : F ] the degree

of F (P ) over F .
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The degree of F (P ) is a first measure of the complexity of the algebraic point P .
The point P is by definition a morphism Spec(F ) → X. The field of definition of P

is the minimal extension L of F , such that there is a point Spec(L) → XF ×F Spec(L)
whose base change to F is P . Notice that the projection give rise to a map Spec(L) →
XF .

The second measure of complexity is the height and it depends on the choice of a
line bundle on XF .

We can extend the variety XF to the algebraic closure F of F : X := XF ×F Spec(F ).
We introduce now the notion of ”functions up to bounded functions”:

4.2 Definition. Let F (X(F );Z) be the group of functions from X(F ) to Z and

B(X(F );Z) be the subgroup of bounded functions (a function is bounded if the image

is contained in [n;m] for some integer n and m). We denote by

H(X(F );Z) :=
F (X(F );Z)
B(X(F );Z)

the group of functions modulo bounded function. If h : X(F ) → Z is a function in

F (X(F );Z), we denote by h(·) + O(1) its image in H(X(F );Z).

The height will be a function, depending on a line bundle, modulo bounded function.
Let LF be a line bundle over XF . First of all we introduce the notion of a model for

the line bundle. Fix a model f : X → B of XF over B. In the sequel, we will denote
by η : XF → X the natural inclusion.

4.3 Definition. A model of LF is a line bundle L over X such that, if η : XF → X is

the natural inclusion, then η∗(L) ' LF .

4.4 Remark. (a) Suppose that XF is a curve. The degree of the restriction of the
line bundle L to the fibre over a closed point of B do not depend on the point. This
number coincide with the degree of the line bundle LF .

(b) Observe that a model of LF is a line bundle on X whose restriction to the generic
fibre is isomorphic to LF .

(c) If XF is PN
F then a natural model of O(1) over the model PN

k × B is p∗1(O(1))
where p1 : PN

k × B → PN
k is the the first projection. We will denote this model, again

by O(1).

It is very important to observe that models of line bundles always exist over suitable
models of XF :

4.5 Theorem. Let XF be a smooth projective variety over F and LF be a line bundle

over it. Let f : X → B be a model of XF . Then there is a blow up X̃ of X and a model

L of LF over X̃ .
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Proof: Every line bundle LF on XF may be written as LF = M ⊗ N⊗−1 where M is
generated by global sections and N is very ample (thus generated by global sections).
Consequently it suffices to prove the theorem when LF is generated by global sections.

Since LF is generated by global sections, it defines a morphism gLF
: XF → PN

F for
a suitable N ; moreover g∗LF

(O(1)) = LF . This morphism extends to a rational map
g : X 99K PN ×B. Consequently there is a commutative diagram

X1

↙ ↘
X1 99K PN

k ×B

where the continuous arrows are morphisms. The variety X1 is birational to X and is
it model of XF over B. The line bundle g∗(O(1)) is a model of LF .

In order to give the definition of the height function, we need to generalize the relation
between rational points and sections to algebraic points.

Let P ∈ X(F ). Let F (P ) its field of definition. We can associate to F (P ) a smooth
projective curve BP and the natural inclusion F ⊂ F (P ) give rise to a finite covering
BP → B.

Observe that, strictly speaking, the curve BP is a model of the F–variety P . This
model is actually, the unique model of it; this is due to the fact that there is a unique
smooth model of a field of transcendence one. In in general the fact that there is more
then one model, corresponds to the fact that, given a field of transcendence bigger then
one, there is more then one smooth variety with that field as function field.

The same proof of 2.14 allows to prove the following:

4.6 Theorem. Let L/F be a finite extension. Let h : BL → B be the corresponding

smooth projective curve and the corresponding finite morphism. There is a bijection:

{Points p ∈ XF (L)} ←→ {k −morphisms P : BL → X s.t. f ◦ P = h} .

We fix a smooth projective variety XF over F and a line bundle LF over it. The
height function with respect to LF is defined as following:

Fix a model X → B of XF and a model L of LF over it.
The point P give rise to a k–morphism P : BP → X . Thus we may consider the

number
hL(P ) :=

1
[F (P ) : F ]

· deg(P ∗(L)).

4.7 Definition. The height function with respect to LF is the class in H(X(F );Z) of

the function P 7→ h(P ) and it is denoted by hL(P ) + O(1).

Of course one must show that this definition do not depend on the choices: in par-
ticular we have to show that:

(a) it is independent on the model L of LF ;
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(b) it is independent on the the model X of XF ;
(c) It do not vary if we consider the point P as defined over a bigger field.

We start by proving (a). For this we need a lemma which tells us about the shape of
the different models of a line bundle LF over XF .

4.8 Definition. Let B be a curve and f : X → B be a morphism from a normal

variety to B. Let D be a reduced irreducible divisor on X :

(i) D is said to be horizontal, if f |D : D → B is dominant;

(ii) D is said to be vertical if f |D : D → B is a point.

Observe that every divisor D := niDi has a unique decomposition D = H + V with
H which is a sum of horizontal divisors and V is a sum of a vertical divisors. The divisor
H will be called the horizontal part of D and V will be called the vertical part of D. It
is very important to notice that Dη = Hη. Indeed, the image on B of the generic point
of an irreducible vertical divisor is a closed point.

The relation between two different models of a line bundle is resumed in the following.

4.9 Proposition. Let XF a smooth projective variety over F and let LF be a line

bundle over it. Let f : X → B be a model of XF and L1 and L2 be two models of LF

over it. Then there is a vertical Cartier divisor V over X such that

L2 ' L1 ⊗OX (V ).

Proof: Consider M := L1⊗L⊗−1
2 . By construction M is a model of OXF

. It suffices to
prove that the models of OXF

are OX (V ) with V a vertical divisor.
First of all observe that OX (V ) is a model of OXF : we may suppose that V is

effective. Indeed, write V = V1 − V2 with Vi effective. It suffices to prove that OX (Vi)
is a model of OXF

. The restriction to the generic fibre of the global section section V

of OX (V ) is nowhere vanishing (indeed, the projection of V on B do not contains the
generic point) thus the restriction to the generic fibre of OX(V ) is isomorphic to OXF

.
Let M be a model of OXF . Write M = OX (D) for some divisor D. By hypothesis,

Dη is principal, thus there is a meromorphic function f ∈ F (XF ) = k(X ) such that
Dη = (f)η. Since the decomposition in vertical and horizontal part is unique, Dh = (f)h

thus D = (f) + V with V a vertical divisor. From this we deduce that M ' OX (V ).

The proposition above implies that the height function do not depend on the choice
of the model of the line bundle:

4.10 Theorem. Let XF be a smooth projective variety over B and LF be a line

bundle over it. Let f : X → B be a projective model of XF over B and L1 and L2 be

two models of LF over it. Then there is a constant C for which the following holds:

Let L/F be a finite extension and p : Spec(L) → XF be a L rational point. Let

h : BL → B be the finite covering corresponding to L and P : BL → X the morphism
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associated to p; then
∣∣∣∣

1
[L : F ]

· deg(P ∗(L1))− 1
[L : F ]

· deg(P ∗(L2))
∣∣∣∣ ≤ C.

In particular the height function hLF
(·)(as a function modulo bounded functions) do

not depend on the choice of the model of the line bundle LF .

Proof: By hypothesis, we may find two effective vertical divisors V1 and V2 such that
L1(V1) = L2(V2). Thus we may suppose that there is an effective vertical divisor V

such that L1 = L2(V ). We may find an effective divisor D on B such that f∗(D) ≥ V .
Observe that P ∗(f∗(D)) = h∗(D) consequently 1

[L:F ] · deg(P ∗(f∗(D))) = deg(D);
thus 1

[L:F ] · deg(P ∗(f∗(D))) is independent on P .
The image of BL is not contained in a fibre, consequently, for every effective vertical

divisor V , we have that deg(P ∗(V )) ≥ 0. Since f∗(D) ≥ V , we have that 1
[L:F ] ·

deg(P ∗(f∗(D))) ≥ 1
[L:F ] · deg(P ∗(V )) ≥ 0. Since that deg(P ∗(L1)) = deg(P ∗(L2)) +

deg(P ∗(V )) the conclusion follows.

Now we come to the proof of (b).

4.11 Proposition. Let XF be a smooth projective variety over F and LF be a line

bundle over it. Suppose that (f1 : X1 → B;L1) and (f2 : X → B,L2) are two models

of XF and LF respectively. Then there is a constant C for which the following holds:

Let L/F be a finite extension and p : Spec(L) → XF be a L rational point of XF ;

let Pi : BL → Xi be the corresponding sections. Then
∣∣∣∣

1
[L : F ]

· deg(P ∗1 (L1))− 1
[L : F ]

· deg(P ∗2 (L2))
∣∣∣∣ ≤ C.

In particular the height function associated to LF is independent on the choice of the

models.

Proof: The two models are projective varieties with the same field of rational functions.
Thus they are birational varieties. Consequently we may find a variety X3 and a diagram
of birational morphisms

X3

↙ ↘
X1 X2.

Observe that X3 may be chosen to be a model of XF . Thus we may suppose that there
is a birational morphism g : X1 → X2 and P2 = g ◦ P2. Consequently deg(P ∗2 (L2)) =
deg(P ∗1 (g∗(L2)). Since g∗(L2) are models of LF over X1, the conclusion is a consequence
of 4.10.

The proof of (c) is a consequence of this easy lemma (which we already implicitly
used in the proof of 4.10):
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4.12 Lemma. Let L/F be a finite extension and h : BL → B be the corresponding

finite covering of curves. Let M be a line bundle on B then

1
[L : F ]

· deg(h∗(M)) = deg(M).

The proof is left to the reader.

The height of a rational point is the second measure of its complexity. As one can
see from the definition, the computation of the height requires global information over
the curve naturally associated to the field of definition of the point. This is why the
height has an arithmetic nature.

4.13 Example. Let XF = PN
F and LF = O(1). A natural model of it is X := PN

k ×
B → B. A model of LF is p∗1(O(1)), where p1 : X → PN

k is the natural projection. Let
L/F be a finite extension and p : Spec(L) → XF be a rational point. Let P : BL → X
the corresponding section. The composite of P with p1 give rise to a map T : BF → PN

k .
The height hLF

(p) of p is deg(T ∗(O(1)).
Suppose that H is an hyperplane of PN

k ; thus H is a global section of O(1). The fact
that T do not factorize trough H is equivalent to say that the algebraic point p is not
contained in H. In this case, the height of p is the degree of the effective divisor T ∗(H);
thus it is lower bounded.

4.13 Properties of heights.

(a) The height function:

h∗(·) : Pic(XF ) −→ H(XF (F );Z)

L −→ hL(·)
is a morphism of groups (proof left to the reader).

(b) Functoriality: Let g : XF → YF be a morphism of F–varieties. Let LF be a line
bundle on YF and pSpec(L) → XF be an algebraic point. Then

hg∗(LF )(p) = hLF (g(p)).

Observe that g(p) := g ◦ p : Spec(L) → YF is naturally a point in YF (L).
Proof: Choose models X and Y of XF and YF respectively. The morphism g : XF → YF

extends to a rational map g : X 99K Y (why?). Thus we can find a variety X1 birational
to X and a commutative diagram

X1

↙ ↘
X1 99K Y

where the continuous arrows are morphisms, and not just rational maps. The variety
X1 is a model of XF , thus we may suppose that the morphism g : XF → YF extends to
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a morphism g : X → Y between suitable models. The point p extends to a morphism
P : BL → X and the point g(p) extends to the morphism g ◦ P : BL → Y. We may
suppose that there is a model L of LF over Y. Then g∗(L) is a model of g∗(LF ) over
X . The conclusion follows.

(c) Suppose that D ∈ H0(XF ; LF ) is a non zero global section. Then, for every point
p ∈ XF (F ) we have that

hLF
(p) ≥ O(1).

By the formula above we mean that, each time we fix a representative h(·) of the
height function hLF

(·), then there is a constant C such that h(p) ≥ C for every algebraic
point p not in D.
Proof: Fix models X of XF and L of LF . The global section D extends to a global
section D ∈ H0(X ;L(V ) for some vertical divisor V . Observe that L(V ) is a model of
LF . Let p ∈ XF \D. It extends to a section P : Bp → X . The fact that p 6∈ D implies
that the image of Bp is not contained in D. We have that P ∗(D) is a non zero global
section of P ∗(L(V )). Thus deg(P ∗(L(V )) is positive. The conclusion follows.

Property (c) has many formal consequences:
(d) Suppose that there is a power of LF which is generated by global sections, then

hLF
(·) ≥ O(1).

Proof: Since hL⊗n
F

(·) = nhLF
(·)+O(1), we may suppose that LF is generated by global

sections; this means that we can fix global sections D1, . . . , Dm of LF such that, for
every p ∈ XF (F ) there is Di such that p 6∈ Di. The conclusion follows from (c).

(e) If LF is ample, then hLF
(·) ≥ O(1).

This is just a particular case of (d).
(f) Suppose that LF is ample and MF is another line bundle, then there is a constant

A such that
hLF

(·) ≥ AhMF
(·) + O(1).

Proof: It suffices to remark that there is a positive integer n such that L⊗n ⊗M⊗−1 is
ample.

(g) If LF is an ample line bundle and MF is a line bundle numerically equivalent to
zero, then, for every ε > 0 we have that

|hMF
(·)| ≤ εhLF

(·) + O(1).

Proof: Since MF is numerically equivalent to zero, by the Nakai Moishezon criterion,
for every constant A, the line bundle LF ⊗M⊗A is ample. The conclusion follows from
(f).

Properties (b)–(g) essentially tell us that, up to some error term, the height associated
to a line bundle depends only on its numerical class. Beware that it is not true that the
height depend only on the numerical class.

(h) Suppose that L is a line bundle and Y is the intersection of the base loci of
H0(XF , L⊗n

F ) for n ∈ N, then for every p ∈ (XF \ Y )(F ) we have hLF
(p) ≥ O(1) where
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the involved constant is independent on p. The proof of this is again an application of
(c) and left as exercise.

4.14 Bounded families. The most important property of height is that, if we can
bound the height of a set of rational points on a projective variety, then this set is
”controllable”. In the best situation, this set will be finite.

4.14 Example. Let F = k(t), thus B = P1
k, and XF = P1

F . We take L = O(1). As
model of XF we take p1 : X := P1

k×P1
k → P1

k and as model of L we take L := p∗2(O(1)),
where p2 : X → P1

k is the second projection. Rational points p ∈ X(F ) correspond to
algebraic maps ϕp : P1

k → P1
k (project on the second factor).

Let p ∈ X(F ) and P : P1
k → X the corresponding section. Then

hL(p) = deg(ϕp(O(1))) = deg(ϕp).

Suppose that S ⊂ XF (F ) is a set of rational points and suppose that it is a set of
bounded height. This means that there exists a constant C such that, for every p ∈ S

we have that hL(P ) ≤ C. Consequently, the corresponding set of maps ϕp, for p ∈ S is
a set of rational maps of bounded degree from P1

k to P1
k.

Fix a positive integer n. The set of degree n maps from P1
k to P1

k is in bijection with
the set of lines in H0(P1

k;O(n)); thus it is in bijection with the k rational points of Pn−1
k .

From the observation above, we deduce that there exists a variety Y over k and a
natural injection S ⊂ Y (k).

The example above can be generalized. We will see that the set of rational points of
bounded height of a variety can be parametrized by the k–rational points of a variety
defined over k. If the variety is not isotrivial then we can say even more: The set of F

rational points of a non isotrivial variety is not Zariski dense (for simplicity here we will
prove only the case of curves). This is very important, because it explain to us why we
are interested on bounding the height of rational points.

We concluded the example above by saying that there is a ”natural inclusion” S ⊂
Y (k). We would now clarify what we mean by ”natural inclusion”. As usual this is
done by looking to models.

4.15 Definition. Let X and Y be two varieties over k. Suppose that f1 : X → Y and

f2 : X → Y are two morphisms. We will say that f1 is equivalent to f2 are equivalent

if there exist isomorphisms ϕ : X → X and ψ : Y → Y such that the following diagram

is commutative:
X

f1−→ Y
ϕ

y
yψ

X
f2−→ Y.
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Suppose that X and Y are projective varieties. Let U a quasi projective variety.
A morphism F : X × U → Y may be seen as a family of morphisms from X to Y

parametrized by U . For every point u ∈ U the map

Fu :X −→ Y

p 7−→ F (p, u)

is a morphism from X to Y .

4.16 Definition. Let X and Y be projective varieties over k. Let S be a set of

morphisms from X to Y . We will say that S is a bounded family of morphisms if there

exists a quasi projective variety U a morphism F : X ×U → Y a subset V ⊆ U(k) such

that every s ∈ S is isomorphic, as morphism, to a morphism Fu for some u ∈ V .

Essentially, a bounded family of morphisms is a set of morphism which appear as a
subset of a parametrized family of morphisms.

Of course the definition above has a counterpart for rational points of varieties:

4.17 Definition. Let XF be a variety defined over a function field F . Let S ⊆ XF (F )
be a set of rational points. Fix a model X → B of XF . Let S be the set of sections

B → X deduced from S. We will say that S is bounded if the set S is a bounded family.

A set of rational points is bounded if it can be parametrized by the set of points of
a variety over k.

The first theorem about points of bounded heights is the following:

4.18 Theorem. Let XF be a projective variety and L be an ample line bundle over

it. Suppose that S is a set of F rational points of XF . Then S is bounded if and only

if there is a constant C such that, for every point p ∈ S, we have that hL(p) ≤ C.

Of course, when we say that the height is bounded, we mean that, for every repre-
sentative of hL, there is a constant depending on the representative which bound the
representative of the height.

The proof of the theorem is similar to example 4.14, the main difficulty is that, for
an arbitrary curve, there are many line bundles of fixed degree.

Before we start the proof we recall the definition of the Jacobian of a curve.

4.19 The Jacobian of a curve. Let B be a curve over an algebraically closed field k.
We recall that there is an exact sequence

0 → J(B)(k) −→ Pic(B)
deg−→ Z→ 0.

Where J(B) is a smooth projective group variety (an abelian variety) called the Jacobian
of B. The dimension of J(B) is equal to the genus g(B). The set of closed points of
J(B) is in natural bijection with the set of isomorphism classes of line bundles of degree
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zero over B. For every integer d, the set of isomorphism classes of line bundles of degree
d over B is in bijection with the set of rational points of a smooth projective variety
Jd(B) non canonically isomorphic to J(B).

Let T be a k–scheme; and a line bundle L over B × T is said to be of relative degree
d if for every field K and morphism p : Spec(K) → T the line bundle p∗(L) over the K

curve B ×k K has degree d.
The variety Jd(B) has the following universal property. There is a line bundle Pd →

B × Jd(B) such that the following holds: suppose that we have a line bundle L of
relative degree d over B × T ; then there is a morphism fL : T → Jd(B) and a line
bundle M on T such that (id× fL)∗(Pd) ' L⊗ p∗2(M).

Proof: of 4.18 First of all observe that, by property (f) of heights, if the height of
the elements of S, with respect of an ample line bundle L is bounded by a constant
depending only on L and S (and the chosen representative of the height function), then
for every line bundle M , the same property holds.

Suppose that S is bounded. Thus there is a model X of XF , a quasi projective variety
U and a morphism F : B × U → X such that, for every point p ∈ S there is a point
up ∈ U(k) such that the section corresponding to p is isomorphic to F (·, up) : B → X .
We may suppose that U is irreducible.

We may compute the heights with respect to L by choosing an ample line bundle L
on X . The projection p : B × U → U is smooth, in particular it is flat; consequently
the degree of the restriction of F ∗(L) to the fibres of p do not depend on the fibre. The
height of p with respect to L is the degree of F (·, up)∗(L), thus independent on p and
in particular bounded.

We prove now that a set of F–rational points with bounded height is bounded.
Fix a model p : X → B of XF and a model L of L.

We may suppose that XF is PN , X = B×PN and L = O(1). Indeed, since L is very
ample, we may embed ι : X ↪→ PN in such a way that ι∗(O(1)) = L. The claim follows.

Let p ∈ S. From the reductions above, either hL(p) = 0 or hL(p) > 0. The set of
points p such that hL(p) = 0 correspond to constant morphisms P : B → PN ; thus they
are parametrized by a subset of PN (k).

Thus we may restrict our attention to points p with hL(p) > 0.
Taking a suitable Veronese embedding, we may suppose that for every point p ∈ S,

we have that hL(p) ≥ 2g(B)− 1.
The theorem will be a consequence of the following proposition:

4.20 Proposition. Let B a smooth projective curve of genus g. Let d ≥ 2g−1 and N

be positive integers. Then the set of morphisms f : B → PN such that deg(f∗(O(1))) =
d is a bounded family.

Proof: We recall that the set of morphism with the property stated is in bijection with
the the set of couples (V ; L) where L is a line bundle of degree d and V is a subspace of
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H0(B; L) of dimension N + 1 and such that the natural restriction map V ⊗OB → L

is surjective.
Let Jd(B) and Pd be the variety and the line bundle which parametrize all the line

bundles of degree d over B.
For every line bundle L of degree d on B, we have h0(B, L) = d+1−g (by hypothesis

on the degree and Riemann–Roch), in particular the dimension of the space of global
sections depends only on d. Consequently, if p : B × Jd(B) → Jd(B) is the projection,
we have that p∗(Pd) is a vector bundle of rank d + 1− g.

Since every line bundle of degree d on B is generated by global sections, we have a
surjective morphism

p∗(p∗(Pd)) −→ Pd → 0.

Let g : GrN (p∗(Pd)) → Jd(B) be the relative grassmanniann of sub bundles of rank
N of p∗(Pd). Over GrN (p∗(Pd)) we have a universal subbundle N ↪→ g∗(p∗(Pd)).
Since GrN (p∗(Pd)) ×k B = GrN (p∗(Pd)) ×Jd(B) (Jd(B) ×k B), if we denote by q1

the projection q1 : GrN (p∗(Pd)) ×k B → GrN (p∗(Pd)) and by q2 the projection q2 :
GrN (p∗(Pd))×k B → B, we have a natural morphism over GrN (p∗(Pd))×k B

ϕ : q1(N ) −→ q∗2(Pd).

By the universal property of Jd(B) and of the relative grassmannian, every couple
(V, L) with L line bundle of degree d on B and V subspace of dimension N of H0(B; L)
corresponds to a closed point of GrN (p∗(Pd). The couples which correspond to mor-
phisms B → PN of degree d, are the couples for which the natural map V ⊗OB → L is
surjective.

Let Q be the cokernel of ϕ and Z be the support of Q. The lemma of Nakayama
implies that Z intersect the fibre of q1 : GrN (p∗(Pd)) ×k B → GrN (p∗(Pd)) over the
point (V,L) ∈ GrN (p∗(Pd)) if and only if the morphism V ⊗OB → L is not surjective.
Let U be the open set complementary to the image of Z via q1. It is non empty because
we know that there exist morphisms of degree d of B in Pn. The morphisms of B of
degree d in PN are in bijection with the set of closed points of U . The conclusion follows.

When XF is a non isotrivial family we can say even more. The existence of too
many F–rational points of bounded height implies that the Kodaira Spencer class of
XF vanishes. Observe that if XF is trivial then, surely all the points ”coming from k”
have bounded height. Thus the existence of many points of bounded height is essentially
equivalent with the fact that the variety is isotrivial.

Proposition 4.20 tells us that there is a quasi projective variety which classifies mor-
phisms of fixed degree from a projective curve to the projective space. Before we can
study rational points of bounded height over an arbitrary non isotrivial variety we need
to prove that there is a variety classifying morphisms of fixed degree from a smooth
projective curve to an arbitrary variety. Usually one can deduce the existence of such a
variety appealing to the theory of the Hilbert schemes. Here, for sake of self complete-
ness we will deduce it from 4.20 and some considerations in projective geometry.
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4.21 Theorem. Let X be a smooth projective variety, L be an ample line bundle over

it and d a positive integer. For every curve B, the set

S := {f : B → X / deg(f∗(L)) = d}

is a bounded family.

Proof: First of all we may suppose that L is very ample, thus it induces an inclusion
i : X ↪→ PN . Consequently the set S is a subset of the set SP of morphisms from B

to PN of degree d. Since, by proposition 4.20, SP is the set of closed points of a quasi
projective variety U , it suffices to prove that S is the set of closed points of a closed
subvariety of U .

This will be a consequence of the following two lemmas:

4.22 Lemma. Let Y be a smooth projective variety and Z ↪→ Y be a closed sub-

scheme. Let F : U × B → Y be a morphism and q ∈ B(k) be a closed point. Then

there exists a closed subscheme Nq ↪→ U with the following property: let u ∈ U(k) then

F (u, q) ∈ Z if and only if u ∈ Nq(k).

4.23 Lemma. Let Y be a smooth projective variety Z ↪→ Y be a closed subscheme, L

an ample line bundle on Y and d a positive integer. Then there exists a positive integer

a with the following property: let f : B → Y be a morphism such that:

– deg(f∗(L)) = d;

– there exist a distinct points p1, . . . , pa ∈ B(k) such that f(pi) ∈ Z.

Then f(B) ⊆ Z.

We show how the two lemmas imply the theorem: appy Lemma 4.23 to Y = PN

and Z = X. Let a be the number deduced from the lemma. Fix a distinct points
q1, . . . , qa ∈ B(k). Apply lemma 4.22 to the variety U constructed in proposition 4.20
and the points qi. We deduce the existence of a subvarieties Nq1 , . . . , Nqa . Let N :=
Nq1 ×U · · · ×U Nqa ↪→ U . The scheme N is the schematic intersection of the Nqi ’s.
Consequently, u ∈ N(k) if and only if F (qi, u) ∈ Z for every i. By lemma 4.23, the
morphism F (·, u) : B → PN factorizes through X if and only if u ∈ N(k). The
conclusion follows.

Proof: of 4.22: Denote by iq the inclusion U → U×B obtained by u 7→ (u, q) and by Fq

the morphism F ◦ iq : U → Y . Let Nq be the variety obtained by the cartesian diagram

Nq := U ×Y Z −→ Zy
y

U
Fq−→ Y.

A simple diagram chasing shows that Nq has the searched properties.

Proof: of 4.23: By induction on the codimension, we may suppose that Z is an effective
divisor of Y . We may find a effective smooth ample divisor D and a positive integer n
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such that Ln = OY (Z + B). Take a = nd + 1. Let f : B → Y be a morphism then
deg(f∗(O(Z))) ≤ nd because deg(f∗(O(Z)) + deg(f∗(O(D)) = nd and D is ample.
Suppose that f(B) 6⊂ Z, then deg(f∗(Z)) ≥ a. The conclusion follows.

Unfortunately we cannot prove that a variety with a dense set of rational points with
bounded height is isotrivial. We can prove it in a very interesting situation.

4.24 Definition. We will say that a variety X over a field is general if it do not

contains rational curves.

4.25 Remark. A general variety is not a variety of general type in general. For
instance an abelian variety is general from this point of view.

The main theorem of this subsection is the following which tells us that a non isotrivial
projective general variety cannot have a Zariski dense set of rational points of bounded
height.

4.26 Theorem. Let XF be a smooth projective general variety defined over F and L

be an ample line bundle over it. Suppose that there is a constant A such that the set

XF (F )≤A := {p ∈ XF (F ) / hL(p) ≤ A}

is Zariski dense. Then the Kodaira Spencer class of XF vanishes.

4.27 Remark. By 3.34 this implies that, if a curve has an infinite set of rational
points with bounded height, then it is isotrivial.

Proof: We may fix a smooth and projective model f : X → B of XF and we may
suppose that L has an ample model L over X . The set S extends to a set of sections

S := {P : B → X / f ◦ P = Id} .

Taking a suitable subset of S we may suppose that:
(a) For every P ∈ S, we have that deg(P ∗(L)) = d, for a suitable positive integer d.
(b) The union of the images of the P ’s for P ∈ S is dense in X .
Point (b) is due to the fact that S is Zariski dense on the generic fibre.
By theorem 4.21 the set S is a bounded family, thus there is a quasiprojective variety

U and a commutative diagram
B × U

G−→ X
↘ ↙

B.

The first oblique arrow is the natural projection, second is f and G is dominant. Let U

be a smooth compactification: the variety UF := U×Spec(F ) → Spec(F ) is an isotrivial
variety. We can find a blow up Ũ of UF with exceptional divisor E and a dominant
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map G̃ : Ũ → X . Since XF is general and E is covered by rational curves, G̃(E) is
contained in a vertical divisor of X . Since the Kodaira Spencer class of Ũ vanishes on
Ũ \ E, the conclusion follows by 3.27.

It interesting to generalize the statement before a little bit: Recall that a line bundle
M on a smooth projective variety is said to be big if there is a positive integer n, an
ample divisor L and an effective divisor D such that M⊗n = L(D).

4.28 Proposition. Let XF be a smooth projective variety over F and M be a big

divisor on it. Suppose that there is a constant A and the set

{p ∈ XF (F ) / hM (p) ≤ A}

is Zariski dense. Then the Kodaira Spencer class of XF vanishes.

The proof is left as exercise.
The following exercise shows that the hypothesis that XF do not contain rational

curves is essential.

4.29 Exercise. (a) Let X̃ be the surface defined in the example 3.22 prove that the
set of points with bounded height is Zariski dense: an infinite family of such points is
the family of lines in P2

k different to the lines `i.
(b) (A non rational example) Take F to be the field of rational functions of a curve

B having genus at least two without automorphisms. Let XF be the surface (B×B)F .
Let ∆ : B → B × B; It corresponds to a point P∆ ∈ XF (F ). Let X̃F → XF be the
blow up of XF in P∆.

– Prove that the Kodaira Spencer class of XF is different from zero.
For each point p := (a, b) ∈ B × B(k), consider the map ϕp : B → B × B given by

x 7→ (a, b).
– Prove that if a 6= b then ϕp corresponds to a point Pp ∈ X̃F (F ) with bounded

height.
– Prove that the Pp are dense in X̃F .
(c) Let E1 and E2 be two elliptic curves over k which are not isogenous and such

that End(Ei) = Z. Let B be a curve with two non trivial morphisms ϕi : B → Ei.
Let F be the function field of B. Consider the points P0 := (ϕ1, ϕ2), P1 = (ϕ1, 0) and
P2 := (0, ϕ2) over the surface (E1 ×E2)F over F . Let Ỹ → (E1 ×E2)F be the blow up
over the points Pi’s.

– Prove that Ỹ is not isotrivial.
– For every point q ∈ E1 × E2(k) let Pq := P0 + q. Prove that if q is torsion then

the height (with respect to a symmetric line bundle) of pq is the same then the height
of P0.

– Deduce that the set of points of bounded height on Ỹ is Zariski dense.
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5 Logarithmic differentials.

When we consider a variety XF with a divisor D over it and we want to study (D,S)
integral points over it. we may think the divisor D as the divisor at infinity of the
variety. An important tool in this case is the the sheaf of differentials with logarithmic
poles around D. First of all we suppose that D is a simple normal crossing divisor:

5.1 Definition. Let X be a variety and D an effective divisor over it. We will say that

D is simple normal crossing (snc for short) if D :=
∑

Di with Di smooth and, for every

closed point p ∈ X, denoting by mp the maximal ideal of OX,p and by {x1, . . . , xn} a

set of generators of mp/m2
p as OX,p/mp–vector space, there is an integer r < n such that

the restriction of D to Spec(ÔX,p) is x1 · x2 · · ·xr = 0.

Simple normal crossing divisors are important because we can define the sheaf of
differentials with logarithmic poles around them. We recall the main definition (cf. [Dl
chap. II.3] for details and more)

Let X be a variety (over any field k) and D be a snc divisor over it. Denote by U

the open set X \D and by ι : U → X the inclusion. the sheaf ι∗(Ωi
U ) coincide with the

sheaf of differentials of order i over X with poles along D. The de Rham complex on U

induces a map d : ι∗(Ω1
U ) → ι∗(Ω2

U ).

5.2 Definition. The sheaf Ω1
X/k(log(D)) of differentials with logarithmic poles around

D is the subsheaf of ι∗(Ω1
U ) locally generated by ω such that ω and d(ω) have at most

a simple pole around D.

We resume here some properties of the logarithmic differentials:
(a) The sheaf of logarithmic differentials is locally free of rank n = dim(X); more

precisely, suppose that D =
∑

Di, for every p ∈ X choose local parameters f1, . . . , fn

in such a way that locally around p the divisor Di is given by fi = 0 (i = 1, . . . r); then
a local basis for Ω1

X/k(log(D)) is given by df1
f1

, . . . , dfr

fr
, dfr+1, . . . , dfn.

(b) There is a natural inclusion Ω1
X/k ↪→ Ω1

X/k(log(D)). The quotient is canonically
isomorphic to OD; the map Ω1

X/k(log(D)) → OD is called the residue map.
(c) The line bundle

∧n Ω1
X/k(log(D)) is KX/k(D) the line bundle of differential forms

of maximal degree with at most simple poles around D.In particular, if X is a curve, then
deg(Ω1

X/k(log(D))) = 2g(X)−2+deg(D). Observe that, in this case, deg(Ω1
X/k(log(D)))

is the Euler characteristic of the affine curve U := X \D.
(d) Suppose that B is a curve, F = k(B), and f : X → B is a flat projective

morphism. Then the restriction Dη to the generic fibre Xη of D is a snc divisor. The
natural inclusion (coming from property (b) above and theorem 3.8 (a)) f∗(Ω1

B/k) ↪→
Ω1

X/k(log(D)) restricted to the generic fibre give rise to an extension of vector bundles

0 → f∗(Ω1
F/k) −→ (Ω1

X/k(log(D)))η −→ Ω1
Xη/F (log(Dη)) → 0 (5.3.1).
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(e) Suppose that Y is a curve and h : Y → X is a morphism whose image is not
contained in D, then the pull back to Y of a differential with logarithmic pole around
D is a differential with a logarithmic pole around the support of h∗(D). Thus we get a
map

h∗(Ω1
X/k(log(D))) −→ Ω1

Y/k(|h∗(D)|)
where |h∗(D)| is the reduced divisor with the same support then h∗(D).

(f) Suppose that XF is a smooth projective variety defined over F and DF is a
simple normal crossing divisor over it. Fix a model f : X → B of XF and D of DF .
By Hironaka theorem of resolution of singularities, we may take a blow up of X and
suppose that DF has a model which is simple normal crossing. In particular, by 2.27,
when we want to study (D;S)–integral points, we may always suppose that X is smooth
and D is simple normal crossing.

(g) Suppose that we are in the situation of (d). Then the exact sequence 5.3.1 allows
to define a Kodaira Spencer class KS(Xη,Dη) ∈ Ext1(Ω1

Xη
(log(Dη)); f∗(Ω1

F/k)). Observe
that, by functoriality, the inclusion in (b) give rise to a map

α : Ext1(Ω1
Xη

(log(Dη)); f∗(Ω1
F/k)) → Ext1(Ω1

Xη
; f∗(Ω1

F/k))

and α(KS(X,D)) = KS(f). In particular, if the latter is not zero, the former cannot
vanish. If the latter vanish, then it may happens that the former do not vanish; this
corresponds to a family of divisors on a fixed variety parametrized by B.

6 First approaches to ABC .

At this point we can state the main conjecture which, in case of a positive solution
will solve more or less all the qualitative diophantine problems over function fields.
Using the analogy between number fields and function fields, an analogue conjecture
can be stated over number field, but, in this case, the solution of it is even more far
away.

Before we state the conjecture we need another definition.

6.1 Definition. Let X be a smooth projective variety and D an effective divisor on it.

Let Y be a smooth projective curve. If f : Y → X is a morphism such that f(Y ) 6⊆ D.

Suppose that f∗(D) =
∑

niPi. Then we define

N
(1)
D (f) =

∑

i

min{1, ni}.

Observe that χ(Y ) + N
(1)
D (f) = χ(Y \ {f−1(D)}).

The main conjecture is the following:

6.2 Conjecture. Let B be a smooth projective curve and X a smooth projective

variety. Let D be a simple normal crossing divisor on X . Suppose that f : X → B
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is a flat morphism. Then, for every ε > 0 there is a constant C and a proper closed

subvariety Z ( X such that the following holds: for every curve smooth projective curve

Y with a finite morphism h : Y → B and for every morphism P : Y → X whose image

is not contained in D ∪ Z we have that

deg(P ∗(KX(D))) ≤ (1 + ε)(χ(Y ) + N
(1)
D (P )) + C deg(h).

The conjecture is about the couple (Xη, Dη) defined over the function field F and can
be stated as follows there. First of all one have to notice that, up to bounded functions,

the function N
(1)
D

(P )

[F (P ):F ] do not depend on the chosen model.

6.3 Proposition. Suppose that XF is a variety over F and D is an effective divisor

over it. Let fi : Xi → B and Di be models two models of XF and D respectively (Di are

divisors in Xi). Then there is a constant C for which the following holds: Let P ∈ XF (F )
be an algebraic point such that P 6∈ D. Let h : BP → B be the corresponding curve

and Pi : BP → Xi be the models of the point. Then

1
[F (P ) : F ]

·
∣∣∣N (1)

D1
(P1)−N

(1)
D2

(P2)
∣∣∣ ≤ C.

Proof: The proof is similar to 4.11. We may suppose that there is a dominant map
g : X1 → X2. The divisor g∗(D2) − D1 is vertical. Thus there is a positive constant C

and an effective divisor A on B such that −Cf∗1 (A) ≤ g∗(D1) − D2 ≤ Cf∗1 (A). Thus,
since N

(1)
D2

(P2) = N
(1)
g∗(D2)

(P1) and N
(1)
A (h) ≤ deg(A)[F (P ) : F ], the conclusion follows.

Consequently we may give the following definition: Let XF be a smooth projective
variety. Let Divsnc(XF ) be the set of simple normal crossing divisors of XF . For every
D ∈ Divsnc(XF ), choose a model h : X → B of XF and D of D such that D is snc.

6.4 Definition. Let L/F be a finite extension and p ∈ XF \D(L). Let P : Bp → X
be the extension of the point. The class of the function

N
(1)
D (P )

[F (p):F ] in H((XF \D)(F );Z)
depends only on p, XF and D; We call it the truncated counting function of D.

We also need the definition of the ramification term:

6.5 Definition. Let L/F be a finite extension and BL → B be the associated covering

of curves. We will denote by χ(p) the number
χ(Bp)
[L:F ] .

One observe that χ(p) measure the ramification of the covering Bp → B. Indeed, if
such a covering is non ramified, χ(p) is just χ(B).

6.6 Conjecture. (Strong ABC conjecture) Let F be a function field and f : XF → B

be a smooth projective variety over F . Let D be a simple normal crossing divisor. Let
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ε > 0. Then there is a proper closed subset Z ( XF such that, for every p ∈ (XF \D)(F )
we have

hKXF
(D)(p) ≤ (1 + ε)(χ(p) + N

(1)
D (p)) + O(1).

The involved implicit constant may depend on ε.

This conjecture is very deep and perhaps it is not true in such a generality. Perhaps
the factor (1+ε) is too ambitious and a more prudent conjecture is obtained by replacing
this factor by some bigger one. In any case, since at the moment we cannot prove or
disprove it in general we leave here the most ambitious version of the conjecture.

6.7 Consequences of the main conjecture and remarks.

(a) Suppose that XF is an general non isotrivial variety of general type, this means
that KXF

is big and XF do not contain rational curves. Then, if the conjecture is true
for XF and D = ∅, for every finite extension L/F , the set XF (L) is not Zariski dense.
To prove this, it suffices to apply the conjecture and proposition 4.28.

(b) Suppose that XF is general, non isotrivial and D is a snc divisor on it such that
KXF

(D) is big. In this case we will say that the quasiprojective variety U := XF \D is
a general variety of log–general type. Fix a model X of XF and D of D without vertical
components. If the conjecture is true, then for every finite extension L/F and finite set
of points S ⊂ BL, the subset of (D, S)–integral points of XF (L) is not Zariski dense.
Observe that, if XF is isotrivial we can only conclude that the (D, S)–integral points
form a bounded family (even if D is not isotrivial).

(c) Suppose that XF is a variety over F and DX is a snc divisor on it for which the
main conjecture holds. Then we have

6.7 Proposition. Suppose that the conjecture holds for the couple (XF , D). Let

f : YF → XF be a finite morphism whose branch locus is D. Suppose that YF is non

isotrivial and of general type. Then for every finite extension L/F the set YF (L) is not

Zariski dense.

6.8 Remark. This proposition is essentially due to Elkies in the one dimensional case.

Proof: Let DY = f∗(D). Let p ∈ YF (L), one easily sees that N
(1)
DY

(p) = N
(1)
D (f(p)).

Thus, since the conjecture holds for (XF , D) we have that, outside the involved closed
set f−1(Z),

hf∗(KXF
(D)(p) ≤ (1 + ε)(χ(p) + N

(1)
DY

(p)) + O(1).

On the other direction, the Hurwitz formula gives

KYF (DY ) = KYF (log DY ) = f∗(KXF (log D)).

Thus, since N
(1)
DY

(p) ≤ hDY
(p) + O(1), we obtain

hKY
(p) ≤ (1 + ε)(χ(p) + εhDY

(p)) + O(1).
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Since, by hypothesis, KYF
is big we may find a divisor H on YF and a constant C

such that, for every point q ∈ (YF \H)(F )

hKYF
(q) ≥ C · hDY

(q).

Consequently, taking ε so small that ε′ := ε · C ¿ 1, we get

(1− ε′)hKY
(p) ≤ (1 + ε)χ(p) + 0(1).

The conclusion follows.

6.9 Remark. Observe that, in order to have the previous consequence, the factor
(1 + ε) is essential. a different bigger factor is not enough.

As corollary of the proof we proved

6.10 Corollary. Let f : YF → XF be a finite morphism. Suppose that the branch

locus DX is a snc divisor. Let DY = f∗(DX). Then the conjecture holds for the couple

(XF , DX) if and only if it holds for the couple (YF , DY ).

(d) Let L/F be a finite extension, XL and DL the base change of XF and D re-
spectively. Then the conjecture holds for the couple (XF , D) if and only if it holds for
(XL, DL). The proof of this is straightforward and left as exercise.

(e) (Very important complement to (d)) When (XF , D) is a isotrivial curve with a
isotrivial divisor, then the conjecture reduces to the Hurwitz formula:

6.11 Proposition. Suppose that XF is an isotrivial curve and D is an isotrivial

divisor. Then, for every p ∈ (XF \D)(F ) we have that

hKXF
(D)(p) = χ(p) + N

(1)
D (p) + 0(1).

Thus, we see that in this one dimensional isotrivial case, the conjecture holds even
with an equality and ε = 0.
Proof: By (d) we may suppose that XF and D are trivial. We may find a curve X0 over
k and a divisor D0 over it such that XF =' X0×k Spec(F ) h→ X = 0 and D = h∗(D0).
Thus every point p ∈ XF (L) corresponds to a map P : Bp → X0 and hKXF

(D)(p) =
deg(P ∗(KX0(D))). Denote by DP the divisor P−1(D0) i.e. the unique reduced divisor
and having the same support then P ∗(D0). Observe that deg(DP ) = N

(1)
D (p). Hurwitz

formula gives
P ∗(KX0(D)) = KBp(DP )

thus, taking degrees, the conclusion follows.

(e) Suppose that XF = P1
F and D is the the divisor [0 : 1]+[1 : 0]+[−1 : 1]. Then the

conjecture becomes the theorem by Mason which is the analogous of the abc–conjecture

41



over function fields: If B is a curve and f ∈ k(B); let (f)0 =
∑

i=0N niqi; we define
deg(f) :=

∑
i ni and N(f) to be the number N :=

∑
inf{1, ni}:

6.12 Proposition. Let f1, f2, f3 ∈ k(B) rational functions such that f1 + f2 = f3

then

max{deg(fi)} ≤ χ(B) + N(f1) + N(f2) + N(f3) + C.

6.13 Exercise. Show that the statement above is equivalent (in this case) to the
statement of conjecture 6.6.

6.14 Remark. This is the reason why conjecture 6.6 is called the strong abc conjecture.

6.16 The weak version of the conjecture..

We will state now a weaker version of the conjecture (but still very interesting and
open) and prove it in an interesting case.

6.16 Conjecture. (Weak ABC conjecture) Let F be a function field and f : XF → B

be a smooth projective variety over F . Let D be a simple normal crossing divisor.

Then there is a constant A and a proper closed subset Z ( XF such that, for every

p ∈ (XF \D)(F ) we have

hKXF
(D)(p) ≤ A(χ(p) + N

(1)
D (p)) + O(1).

6.17 Remark. Observe that consequences (a) and (b) holds also in this case. Conse-
quence (c) of the strong ABC conjecture is not consequence of the weaker version of it.
Nevertheless a version of corollary 6.10 holds.

Let’s restrict our attention to the case of curves. We will start with a very easy proof
of the conjecture 6.16. In the proof of it we will introduce many of the tools which are
used to prove stronger versions of the conjecture.

6.18 Theorem. (Weak ABC for curves) Let XF be a curve over F and D be a reduced

divisor over it. Then there is a constant A such that, for every p ∈ (XF \D)(F )

hKXF
(D)(p) ≤ A(χ(p) + N

(1)
D (p)) + O(1).

This theorem has as a corollary the Mordell conjecture over function fields:

6.19 Theorem. Let XF be a curve of genus at least two over the function field F .

Suppose that XF is not isotrivial, then, for every finite extension L/F , the set XF (L)
is finite.
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It also implies an analogue of Siegel theorem on elliptic curve.

6.20 Theorem. Let F be a function field and S be a finite set of points of BF . Let

EF be a non isotrivial curve of genus one over F and D a reduced effective divisor over

it. Then for every model E → BF of E and D of D, the set of (D, S) points of E is

finite.

Theorem 6.18 is a particular case a more general statement, which is essentially due
to Moriwaki [Mo1]. Before that we need a definition.

6.21 Definition. Let X be a smooth projective variety and E be a vector bundle over

it. We will say that E is an ample vector bundle if the tautological line bundle OP(1)
over the variety P(E).

We observe the following properties of ample vector bundles:
(a) If E is ample over X and Y ⊆ X is a subvariety, then E|Y is ample over Y

(b) If E →→ Q and Q is a vector bundle, then Q is ample.
(c) if h : Y → X is a finite covering, then h∗(E) is ample.

6.22 Exercise. Prove (a), (b) and (c) above.

The theorem we prove now is the following:

6.23 Theorem. Let XF smooth non isotrivial projective variety over F and D be a

snc divisor over it. Suppose that Ω1
XF /F (log(D)) is ample, then there is a constant A

and a proper closed subset Z ( XF such that for every p ∈ (XF \ Z)(F ) we have that

hKX(D)(p) ≤ A(χ(p) + N
(1)
D (p)) + O(1).

6.24 Corollary. In the same hypothesis as theorem 6.23. If XF is general, then for

every finite extension L/F the set XF (L) is not Zariski dense.

The proof of the corollary is a straightforward application of the height theory.

6.25 Remark. (a) Observe that if XF is a variety with ample cotangent bundle, then
by the properties of ample bundles, it cannot contain rational or elliptic curves.

(b) If XF has ample cotangent bundle and Y ↪→ XF is a closed subvariety, then Y

has ample cotangent bundle. One can find examples of varieties with ample cotangent
bundles in [Db].

Proof: (of Theorem 6.23) Fix a model f : X → B of XF and D of D such that X is
smooth projective over k and D is snc. By construction we have a non trivial extension
over XF

0 → f∗(Ω1
F/k) −→ E −→ Ω1

X/F (log(D)) → 0.
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The vector bundle Ω1
X/k(log(D)) is a model of E over X and h : P(Ω1

X/k(log(D))) → X
is a model of h : P(E) → XF .

Let L/F be a finite extension and p ∈ (XF \D)(L). Let P : BL → X be the model
of the point p. By the functorial properties of the logarithmic differentials, we obtain a
map

α : P ∗(Ω1
X/k(log(D))) → Ω1

BL/k(log(P ∗(D))).

Thus, by the functorial properties of relative differentials, a commutative diagram

P(Ω1
X/k(log(D)))

P̃ ↗
yh

BL
P−→ X

such that h ◦ P̃ = P .
The image of α is a sublinebundle L of Ω1

BL/k(log(P ∗(D))). Moreover P̃ ∗(OP(1)) = L
and we obtain the important inequality

deg(P ∗(OP(1)) ≤ χ(BL) + N
(1)
D (P ).

The theorem will be consequence of the following general theorem:

6.26 Theorem. Let X be a smooth projective variety and M be an ample vector

bundle over it. Suppose that

0 → OX −→ E −→ M → 0

is a non trivial extension and N is a line bundle over X. Let h : P(E) → X be the

projective bundle associated to E and O(1) the tautological line bundle over it. Let Bln
be the base locus of H0(P(E), h∗(N)⊗O(n)). Then, for n À 0 the map h|Bln : Bln → X

is not dominant.

Let’s show how theorem 6.26 implies 6.23. Consider the line bundle N := h∗(KX (D))
on P(Ω1

X/k(log(D))). It is a model of h∗(KXF
(D)) over P(E). Denote by Bln the base

locus of H0(P(Ω1
X/k(log(D))),O(n)⊗N−1). By theorem 6.26, the for n À 0, restriction

to the generic fibre of h(Bln) is a proper closed subset, denote it by Z. Suppose that
p 6∈ Z(L). Then P̃ (BL) 6⊆ Bln. Consequently the degree of P̃ ∗(O(n) ⊗N−1) is bigger
or equal then zero. The conclusion follows.

Proof: (Of Theorem 6.26) By hypothesis we have an inclusion Z := P(M) ↪→ P(E) and
OP(E)(P(M)) = O(1)., Consequently, the line bundle O(1)|Z is ample. Thus, as soon
as n is sufficiently big, the linear system H0(Z,O(n) ⊗ N) is without base points and
without higher cohomology. The exact sequence

0 → O(n− 1)⊗N −→ O(n)⊗N −→ O(n)⊗N |Y → 0
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give rise, for n À 0, to a surjection

α : H1(P(E);O(n− 1)⊗N) −→ H1(P(E);O(n)⊗N) → 0.

Thus for all n À 0, the dimension h1(P(E),O(n)⊗N) is constant and the map α is an
isomorphism; in particular it is injective. Consequently the restriction morphism

Ho((P(E);O(n)⊗N) −→ H0(Z,O(n)⊗N)

must be surjective. This implies that the base locus Bln cannot intersect Z. A similar
argument shows that if Y is a sufficiently ample divisor of X, the natural restriction
map

H1(X,M∨) −→ H1(Y,M∨|Y )

is injective. Thus, by induction on the dimension, If C is a general curve in X, the
extension

0 → OC −→ E|C −→ M |C → 0

is not split. Suppose that h|Bln :→ X is dominant. we may find a very general curve
C ⊂ X and a curve C ′ ⊂ Bln such that C = h(C ′). Since C ′ ∩ Z = ∅ we have that
(O(1), C ′) = 0. The conclusion will follows from the following lemma:

6.27 Lemma. Suppose that, in the hypothesis of theorem 6.26, we have that X is a

smooth projective curve, then for every curve C ′ ⊆ P(E) we have that (O(1), C ′) > 0.

Proof: Let ι : C ′ ↪→ P(E) be a curve. Then g := h|C′ : C ′ → C is a finite morphism (we
omit the trivial case when C ′ is contained in a fibre). By the functorial properties of
P(E), the inclusion ι corresponds to a line bundle L on C ′ with a surjection β : g∗(E) →
→ L; moreover deg(L) = (O(1); C ′). The exact sequence of the hypothesis give rise
to an inclusion i : OC → g∗(E). Thus either β ◦ i : OC′ → L is the zero map or it is
injective. In the first case, we get a non zero map h∗(M) → L,thus, since M is ample,
by properties (b) and (c) of ample vector bundles, deg(L) > 0. In the second case either
β ◦ i is injective or it is an isomorphism. If it is not an isomorphism, again deg(L) > 0;
otherwise, it give rise to a splitting of the the pull back of the exact sequence to C ′; but
this is not possible by 3.30.

7 The Vojta approach and counterexamples in positive characteristic.

In this section we will show the approach essentially due to Vojta and Kim to the
ABC conjecture for curves over function fields. Instead of the factor (1 + ε) in front
of the characteristic class of the point, one obtain the factor (2 + ε) in characteristic
zero and 2g − 2, where g is the genus of the curve, in arbitrary characteristic when the
Kodaira Spencer class is not vanishing. We will also show, with an example, that if the
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curve dominates an isotrivial curve, then, in positive characteristic, the factor 2g − 2 is
optimal (this example is due to Voloch).

Even if in all the notes we supposed that the ground field k has characteristic zero,
here we will not suppose it (if not explicitly said). This is important because the example
we will describe shows that a proof of the general ABC conjecture (if it is true) must
use considerations which hold only in characteristic zero.

In this section k will be an algebraically closed field of arbitrary characteristic. F will
be a field of transcendence degree one over k. We recall (cf. for instance [Ei Corollary
A.1.7]) that there is an element t ∈ F such that F is a separable finite extension of k(t).
Thus Ω1

F/k = F · dt. We denote as usual with B the smooth projective curve over k

having as field of functions F (we will in general use the same notations as before).
Most of the theory developed in the previous sections carry on in this case. The main

difference is that one cannot prove the finiteness theorem 4.26. In particular the we can
define a Kodaira Spencer class for varieties defined over F .

One also have to be careful because at the moment we are not able to prove the
resolution of singularities for varieties of dimension bigger or equal then 3 in arbitrary
characteristic thus the theory of models of the varieties is more delicate. Never the less
observe that we can perform many arguments using the alteration theorem by deJong
[dJ].

Let f : XF → Spec(F ) be a smooth projective curve of genus g and D be an effective
closed divisor over it. Associated to this there is an exact sequence

0 → f∗(Ω1
F/k) −→ Ω1

XF /k(log(D)) −→ KXF /F (D) → 0. (7.1.1)

We will denote by KSD(f) ∈ Ext1(KXF /F (D), f∗(Ω1
F/k)) the class of this extension;

it generalize the Kodaira Spencer class, we already used it in §4.
Notice that we can also consider the exact sequence

0 → F ·dt → H0(XF ,Ω1
XF /k(log(D)) → H0(XF ,KXF /F (D)) ksD−→ F ·dt⊗H1(XF ,OXF

)

directly deduced from the exact sequence 7.1.1. Of course KSD(f) vanishes if and only if
ksD vanishes. We will say that (XF , D) have strong variation if the map ksD is injective.
Notice that, since h0(XF ;KXF /F (D)) = g + deg(D)− 1 and h1(XF ;OXF ) = g, strong
variation can happen only if deg(D) ≤ 1.

7.1 Theorem. Let ε > 0. Suppose that the Kodaira Spencer class KSD(f) do not

vanishes. Then for every p ∈ XF (F ) \D we have that

hKXF /F (D)(p) ≤ (2g − 2 + deg(D) + ε)(χ(p) + N
(1)
D (p)) + Oε(1)

(The involved constant depends on ε, the choice of the height and N
(1)
D (·)).

If, moreover, (XF , D) has strong variation, then

hKXF /F (D)(p) ≤ (2 + ε)(χ(p) + N
(1)
D (p)) + Oε(1).

46



7.2 Remark. One should notice that, in arbitrary characteristic, a point is a morphism
p : Spec(L) → XF such that, if X → B is a projective model of XF and P : Bp → X is
the model of it, then the natural map P ∗(Ω1

X/k) → Ω1
Bp/k is not identically zero.

Proof: Since the resolution of singularities for surfaces is available in any characteristic,
we can take a model f : X → B of XF which is regular and a snc divisor D in it which
is a model of D. We can take a suitable blow up of X in such a way that The exact
sequence 7.1.1 extends to an exact sequence

0 −→ A1 −→ A2 −→ A3 → 0

where A1, A2 and A3 are locally free and they are models of f∗(Ω1
F/k), Ω1

XF /k(log(D))
and KXF /k(D) respectively. Let U ⊆ B be the open set where the restriction of the
morphism f : X → B and the projection f |D : D|U → U are smooth; we may suppose
that the restriction of A1 to V := f−1(U) is isomorphic to f∗(Ω1

B/k)|V , the restriction
of A2 to V is isomorphic to Ω1

X/k(log(D))|V and the restriction of A3 to V is isomorphic
to KX/B(D)|V .

Let p ∈ X(F ) and Lp be its field of definition. The lemma below tells us that we can
suppose that the extension Lp/F is separable.

7.3 Lemma. Suppose that the extension Lp/F is inseparable, then

hKXF /F (D)(p) ≤ χ(p) + N
(1)
D (p) + O(1).

Proof: Let P : Bp → X be the model of the point p. Let h : Bp → B be the projection.
Since Lp/F is inseparable, the natural morphism dh : h∗(Ω1

B) → Ω1
Bp

is zero.
As in the proof of 6.23, we have a map

α : P ∗(Ω1
X/k(log(D))) → Ω1

BL/k(log(P ∗(D))).

Since the morphism dh vanishes, the morphism α induces an inclusion P ∗(C) ↪→
Ω1

BLp /k(log(P ∗(D))). Thus deg(P ∗(C)) ≤ χ(Bp) + N
(1)
D (p). Since C is a model of

KXF /F (D) the conclusion follows.

Denote by E the vector bundle Ω1
XF /k(log(D)). Consider the ruled surface p : P(E) →

XF . Let O(1) be the tautological bundle over it. The self intersection (O(1);O(1)) is
the degree of E so it is 2g − 2 + deg(D). If deg(E) ≤ 0 there is nothing to prove so we
will suppose that it is positive.

The self intersection of the Q–line bundle O(2+ε)⊗p∗(KXF /F (D)−1) is (2+ε)2(2g−
2 + deg(D)) − 2(2 + ε)(2g − 2 + deg(D)) = ε(2 + ε)(2g − 2 + deg(D)) > 0. Since P(E)
is ruled, there is no H2 in the cohomology of line bundles, consequently, for n À 0 the
line bundle (O(2+ ε)⊗p∗(KXF /F (D)−1))⊗n has global sections. Denote by Yn the base
locus of H0(P(E); (O(2 + ε) ⊗ p∗(KXF /F (D)−1))⊗n) and by Y the intersection of the
Yn’s. We just shown that Y is not P(E).
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The ruled threefold p : P(A2) → X is a model of P(E). Denote by O(1) the tauto-
logical line bundle over it. it is a model of the tautological line bundle O(1) on P(E).

As in the proof of 6.23, for every point p ∈ XF (F ) \ D, the natural map α :
P ∗(Ω1

X/k(log(D))) → Ω1
BL/k(log(P ∗(D))) induces a commutative diagram

P(A2)
P̃ ↗

yp

BL
P−→ X

such that p ◦ P̃ = P . Consequently, we can find a positive constant A such that

deg(P̃ ∗(O(1)) ≤ χ(Bp) + N
(1)
D (p) + A[Lp : F ].

Denote by p̃ : Spec(Lp) → P(E) the generic fibre of P̃ . Suppose that p̃ do not belong
to Y , then by property (h) of heights and the formula above we have that

hKXF /F (D)(p) ≤ (2 + ε)(χ(p) + N
(1)
D (p)) + Oε(1).

Now we have to deal with the points p such that p̃ ∈ Y .
From now on, we will denote by Z an irreducible component of the base locus Y .
– First case. The morphism p|Z : Z → X is not dominant: In this case the image is

either a closed point, thus it does contain any F point or it is a finite union of curves.
The height of these curves can be inclosed in the constant. Thus the proof is finished
in this case.

–Second case. The morphism p|Z : Z → X is dominant and separable: Over Z there
is a splitting

0 → M −→ p∗(A2) −→ N → 0 (7.5.1)

induced by the corresponding splitting on P(A2).
Let r : Z̃ → Z be a desingularization of the surface Z where the divisor (p ◦ r)∗(D)

is snc. The surface Z̃ is equipped with a fibration π : Z̃ → B. Taking the Zariski
decomposition of π we find a covering t : B′ → B and a fibration with connected fibres
s : Z̃ → B′ such that π = t ◦ s. Suppose that P : Bp → X is a point whose generic
point of P̃ is in Z. Then, since Bp is smooth, the map P̃ lifts to a map Bp → Z̃,
which, by abuse of notation, we denote again by P̃ . By, 7.3, we may suppose that
the covering t : B′ → B is separable; indeed, otherwise the morphism Bp → B, which
factorizes through B′ is also inseparable and we may apply loc. cit. Consequently we
may suppose that B′ = B. Denote by h the map p ◦ r : Z̃ → X .

The splitting 7.5.1 induces a splitting of Ã2 := h∗(A2):

0 → M̃ −→ Ã2 −→ Ñ → 0. (7.6.1)

Suppose that p ∈ X(F ) is a point such that P̃ ∈ Z. Then, again as in the proof of
6.23, we have that deg(P̃ ∗(Ñ)) ≤ χ(Bp) + N

(1)
D (p) + O(1). Suppose that 2 deg(Ñη) ≥
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deg(h∗(KXF /F (D))) then property (g) of heights implies that

hhh∗(KXF /F (D))(·) ≤ (2 + ε)hÑη
(·) + O(1)

and the conclusion follows.
Thus we may suppose that

2 deg(Ñη) < deg(h∗(KXF /F (D))).

7.6 Proposition. The restriction to the generic fibre of the splitting 7.6.1 is the pull

back to Z̃η of a splitting

S : 0 → Mη −→ E −→ Nη → 0 (7.7.1)

on XF .

We show now how the proposition above implies the theorem, in this case. taking
a suitable blow up, we may suppose that the exact sequence 7.7.1 extends to an exact
sequence

0 → M −→ E −→ N → 0

of vector bundles over X . Observe that E is a model of E . Following the diagrams one
sees that if a point p ∈ XF (F ) is such that P̃ ∈ Z, then

deg(P ∗(N)) ≤ χ(Bp) + N
(1)
D (p).

The degree of the line bundle Nη is positive otherwise the exact sequence 7.1.1 would
be split against the hypothesis: the composite of the inclusion of f∗(Ω1

F/k) in E and the
projection of E to Nη would give a splitting. Consequently, again by property (g) of
heights

hKXF /F (D)(·) ≤ (2g − 2 + deg D + ε)hNη (·) + O(1)

and the conclusion follows.

The Proposition 7.6 will be consequence of the two lemmas below:

7.8 Lemma. Let X be a smooth projective curve. Let E be a vector bundle of rank

two over X. Then If E is not direct sum of two line bundles A and B such that A⊗B−1

is torsion, there is at most one splitting

0 → A −→ E −→ B → 0

with A⊗B−1 is of positive degree or torsion.

7.9 Lemma. Let h : Z → X be a Galois morphism between curves and E be a vector

bundle over X. Let M ↪→ h∗(M) a sub line bundle such that, for every σ ∈ Gal(Z/X)
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we have that σ∗(M) = M ↪→ h∗(E). Then there is a sub line bundle MX ↪→ E such

that h∗(MX) = M .

Let’s see how the lemmas imply proposition 7.6. The condition on the degree of Ñη

implies that deg(M̃η) − deg(Ñη) is positive. Thus M̃η is the line bundle of the unique
splitting of h∗(E) having the properties of lemma 7.8. Since h : Z̃η → XF is separable,
there is a covering g : Z̃ ′ → Z̃η such that h ◦ g is Galois. We may apply then 7.8 and
7.9 to the morphism h ◦ g and conclude.

Proof: (of Lemma 7.8). Suppose that we have two splitting

0y
A1yi1

0 → A2
i2−→ E

j2−→ B2 → 0yj1

B1y
0

with Ai ⊗B−1
i of positive degree or torsion. then the composite map j1 ◦ i2 and j2 ◦ i1

give rise to an effective divisor D such that B1 = A2(D) and B2 = A1(D). Thus
A1 ⊗ B−1

1 = (A2 ⊗ B−1
2 )−1(−2D). Then Ai ⊗ B−1

1 may be both positive or torsion if
and only if D = 0, A1 = B2, B1 = A2 and E is direct sum of A1 and B1.

Proof: (of Lemma 7.9). It suffices to prove the following: let L/F be a Galois extension
of fields. Let K ↪→ L⊕ L a subspace such that, for every σ ∈ G := Gal(L/F ) we have
that σ(K) = K then there is a subspace KF of F ⊕ F such that K = KF ⊗ L. To
prove this it suffices to show that there is an element of K which belongs to F ⊕F : Let
(a, b) ∈ K be a non zero element. By hypothesis, for every σ ∈ G there is an element
fσ ∈ L such that (σ(a), σ(b)) = fσ(a, b). A simple calculation shows that, for σ and
τ ∈ G we have that fτσ = τ(fσ)fτ . Consider the element v :=

∑
σ∈G fσ(a, b) ∈ K. For

every τ ∈ G, τ(v) =
∑

σ∈G τ(fσ)fτ (a, b). Thus, by the observation above, we have that
τ(v) =

∑
σ∈G fτσ(a, b) = v. The conclusion follows.

– Third case. The morphism p|Z : Z → X is dominant but inseparable: Factor
p|Z : Z → X as Z

i→ Z ′ s→ X , where s is separable and i purely inseparable.

The map ΩZ′/k(log(s∗(D))) → i∗(Ω1
Z/k(log(p∗(D)))) is not injective because i is

inseparable. Let L be a saturated line bundle containing the kernel. Consider the
map p̃′ := i ◦ p̃ : Bp → Z ′; we claim that the induced map between differentials
p̃′∗(Ω1Z′/k(log(s∗(D)))) → Ω1

Bp/k(log(p∗(D))) factorizes through the quotient G :=
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ΩZ′/k(log(s∗(D)))/L. Indeed, by functoriality we get a commutative diagram

0 → i∗(L) −→ i∗(ΩZ′/k(log(s∗(D)))) −→ i∗(i∗(Ω1
Z/k(log(p∗(D)))))

↘ ↓
Ω1

Z/k(log(p∗(D)))

and since i ◦ p̃ = p̃′ the claim follows.
Since s : Z ′ → X is separable, generically s∗(Ω1

X/k(log(D))) → Ω1
Z′/k(log(s∗(D))) is

an isomorphism and thus the splitting

0 → L −→ Ω1
Z′/k(log(s∗(D))) −→ G → 0

induces a splitting on s∗(Ω1
X/k(log(D))) and the natural map p̃′∗(s∗(Ω1

X/k(log(D)))) →
Ω1

Bp/k(log(p∗(D))) factorizes through the kernel of it. We are now in a situation which
is identical to the one in we treated in the separable case. Thus the conclusion follows
in the same way.

We now come to the proof of part (b).
Let p ∈ XF (F ) \ D. We see from the proof of part (a) that, either we can find a

constant A and a splitting

0 → L → Ω1
X/k(log(D)) −→ G → 0

independent on p, such that

hKXF
/F (D)(p) ≤ (2 + ε)(χ(p) + N

(1)
D (p)) + A

or the natural map

p∗(Ω1
X/k(log(D))) −→ Ω1

Bp/k(log(p∗(D)))

factorizes through p∗(G). In the last case deg(p∗(G)) ≤ (χ(Bp) + N
(1)
D (p)).

If deg(Gη) ≥ 1
2 ·(2g−2+deg(D)) then again property (g) of heights allow to conclude

that
hKXF /F (D)(·) ≤ (2 + ε)hG(·)

thus we conclude.
If deg(Gη) < 1

2 · (2g − 2 + deg(D)), then deg(Lη) ≥ g (or deg(Lη) > 0 if g = 0);
consequently h0(XF , L) > 0. In this case we get a commutative diagram

0y
H0(XF , L)ya

H0(XF , (Ω1
X/k(log(D)))η) b→ H0(XF ,KXF /F (D)) ksD→ H1(XF ,OXF ).
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The composite map b ◦ a cannot be zero otherwise the inclusion L ↪→ (Ω1
X/k(log(D)))η

would factorize through f∗(Ω1
F/k) which has degree zero and this is impossible because

deg(Lη) is positive. Consequently the map ksD cannot be injective. The conclusion
follows.

7.10 Counterexamples in positive characteristic.

We want to show here that, in positive characteristic, we cannot obtain better then
what we obtained in theorem 7.1.

Let p be a prime number and Fq be a field with q elements where q = pn. Let X/Fq

be a variety defined over it. We recall that the Frobenius morphism is the morphism
FX : X → X which is the identity on the topological space and f → fq on functions.
Let Fq be the algebraic closure of Fq and Fq : Fq → Fq the Frobenius morphism of it.
Denote X the Fq variety X ⊗Fq Spec(Fq). We may consider the commutative diagram

X
(1)

:= X ×Fq
Spec(Fq) −→ Xy

y
Spec(Fq)

Fq−→ Spec(Fq).

The Frobenius morphism FX : X → X give rise to a Fq–morphism F g

X
: X → X

(1)
,

usually called the geometric Frobenius.
Since X comes from a variety defined over Fq, then X

(1)
is isomorphic to X thus

the geometric Frobenius is a Fq–endomorphism Fg : X → X of X. Remark that the
geometric Frobenius is purely inseparable.

Suppose that X is a smooth projective curve defined over Fq. The geometric Frobe-
nius of X is a flat morphism of degree p. In particular, if L is a line bundle over X,
then deg(F ∗g (L)) = p deg(L).

From now on, in this section k will be the algebraic closure of Fq.

7.10 First example. Suppose that C and S are smooth projective curves defined over
Fq. We denote by the same symbol the base change of them to k. Denote by F the
function field of C. Suppose that we have a separable morphism g : S → C. Denote by
d the degree of g. The graph of g is an F point p0 of the curve S, seen as a trivial curve
over F . The product S × C is a model of S over C.

Denote by FS : S → S the geometric Frobenius of S and consider the points pn :
S → S × C given by the morphism (Fn

S , g).
We see that:
(a) hKS/F (pn) = 1

d deg(p∗n(KS)) = qn

d χ(S);
(b) χ(Bbn) = χ(S).
Thus we constructed a sequence of points on a trivial curve whose height goes to

infinity but the Euler characteristic class of them remains constant. Consequently, if
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the Kodaira Spencer class vanishes, even the analogue of the weak abc conjecture cannot
hold.

7.11 Second example.

We will show an example of curve which is not isotrivial but over it the strong version
of the ABC conjecture do not holds. This example is due to Voloch.

Fix two smooth projective curves C and S. We fix a totally ramified morphism
g : S → C of degree d < p (the fact that g is totally ramified is not necessary but it
simplify the proof). Denote by Γg the graph of g in S × C.

We will show that there is an étale covering α : C ′ → C and a generically finite
morphism of degree d

b : X −→ S × C ′

ramified only over (Id× α)∗(Γg).
Denote F the function field of S and by XF → Spec(F ) the curve deduced from X.

The curve XF is not isotrivial. Indeed, fix a generic point x ∈ S the fibre Xx of X over
it is a curve with a morphism bx : Xx → C ′ of degree d whose branch locus is the set of
points y such that α(y) = g(x). If the family were isotrivial, the family of morphisms
bx were an infinite set of distinct morphisms from a fixed curve to another. And this
cannot exists. Remark that the morphisms would be distinct because the branch locus
varies.

The cover α give rise to a commutative diagram

T
g′−→ C ′

h

y
yα

S
g−→ C.

Since α is étale and g totally ramified, the morphism g′ is of degree d. Denote by
FT : T → T (resp. FS , resp. FC)the Frobenius morphism of T (resp. of S, resp. of
C). The morphism pn := (h, g′ ◦Fn

T ) : T → S×C ′ give rise to a cartesian commutative
diagram

Qn
bn−→ T

p̃n

y
ypn

X
b−→ C ′ × S.

Notice that p̃n is a sequence of points in XF (F ). The morphism h ◦ bn : Qn → S

is separable. The branch locus of it is contained in the set of x ∈ S for which there
exists y ∈ S such that g(x) = g(y) and Fn

S (x) = Fn
S (y). since FS(g(x)) = g(FC(x)),

we obtain that such a branch locus is contained in the set g−1(C(Fqn)). By the Weil
estimate on the number of rational points of a curve over a finite field, we have that
Card(C(Fqn)) ∼ qn. Consequently, the cardinality of the branch locus of h◦bn is upper

53



bounded by dqn (plus error terms). From this we deduce that

χ(Qn) ≤ A + deg(bn) · deg(h) · qn · d

On the other side, the property (g) of heights tells us that there is a constant B such
that

d · χ(C ′) deg(p̃∗n(KX/S)) = χ(XF ) · deg((p̃n ◦ h)∗(KC′×S/S)) + B.

Thus deg(p̃∗n(KX/S)) ' χ(XF )qn deg(bn). Consequently,

deg(p̃∗n(KX/S))
χ(Qn)

≥ χ(XF )
ddeg(h)

− ε

as soon as n À 0. Thus the strong ABC conjecture cannot hold for X.

We explain now how to construct such a X. This is a variation on a classical con-
struction due to Kodaira. We keep the notations of the first example.

Let S be a smooth projective curve of genus bigger or equal then two. In 4.19 we
introduced the Jacobian J(S) of S and the universal line bundle P0 over S×J(S). One
can show that, for every integer n, the morphism multiplication by n, [n] : J(S) → J(S)
is such that

(Id× [n])∗(P0) ' (P0)⊗n. (7.11.1)

7.11 Lemma. Suppose that the morphism g is of degree n and that (n, p) = 1. Denote

by Γg the graph of g. There is an étale covering π : C ′ → C and a line bundle L on

C ′ × S such that

L⊗n ' (π × Id)∗(O(Γg)).

Proof: Fix a point t ∈ S(k). The line bundle L := O(Γg−n{t})×C is of relative degree
zero over C. By the universal property of the Jacobian, we can find a line bundle M

on C and a morphism fL : C → J(S) such that

(Id× fL)∗(P0) = L⊗ p∗2(M).

Let [n] : J(S) → J [s] be the morphism multiplication by n. Let C ′ be the curve
obtained by the cartesian diagram

C ′
f ′−→ J(S)

r

y
y[n]

C
fL−→ J(S).

Suppose for the moment that C is connected. The line bundle r∗(M) is of degree
divisible by n thus we can find a line bundle N ′ on C ′ such that (N ′)⊗n ' r∗(N). By
formula 7.11.1 we conclude in this case. In the general case we take an étale cyclic
covering of a connected component of C ′ and apply the same argument.
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The morphism π : C ′ → C give rise to an étale covering πS : C ′F → CF . The
morphism g corresponds to a point p0 ∈ CF (F ). We just proved that there exists a line
bundle L on C ′F such that π∗S(O(p0)) ' L⊗n. Let s ∈ H0(CF ,O(p0))) vanishing only
on p0. We may find a open covering {Ui} of C ′F and a cocycle {gij} for this covering
which corresponds to the line bundle L. By definition we may suppose that s is given
by local sections si such that si = gn

ijsj . Suppose that Ui = Spec(Ai) and consider the
covering Vi := Spec(Ai[zi]/(zn

i − si) → Spec(Ai). We can glue together the V ′
i ’s via the

isomorphism zi → gijzj to obtain a covering f : XF → SF ′ . Since the si vanish only on
p0, one easily (exercise: here we use that d < p) verify that the branch locus of f is p0.
The curve XF is the searched curve.

7.14 The Jouanoulou theorem. In this subsection we suppose that k is a field of
characteristic zero. In the proof of Theorem 7.1 we saw the following:

Suppose that f : XF → Spec(F ) is a smooth projective curve and D ⊆ XF is a
reduced effective divisor. Let f : X → B and D be models of XF and D respectively.
Let ε > 0. Then there is a constant A and finitely many rank one locally free sub
bundles Li ↪→ Ω1

X/k such that the following happens:
Let p ∈ XF (F ) \D then,
(a) Either hKXF /F (D)(p) ≤ (2 + ε)(χ(p) + N

(1)
D (p)) + A;

(b) Or there is i such that the map p∗(Li) → Ω1
Bp/k, induced by the differential map

p∗(Ω1
X/k) → Ω1

Bp/k is the zero map.

The theorem by Jouanoulou is an interesting tool coming from the theory of foliations
which tells us that, up to change the constant A, even in the situation (b) we may
suppose that an inequality as in (a) holds.

7.14 Definition. Let X be a surface over the field k. A foliation over X is an exact
sequence

F : 0 → L −→ Ω1
X/k −→ G → 0

where L is locally free and G is without torsion.

A foliation is essentially a differential equation on X.

7.15 Example. Let X be a smooth surface and B be a curve. Suppose that we have
a flat morphism π : X → B. The morphism π induces a foliation on X given by the
exact sequence

0 → L −→ Ω1
X/k −→ G → 0.

where L the smallest subbundle of Ω1
X/k, containing π∗(Ω1

B/k) and such that Ω1
X/k/L

is without torsion. Observe that, due to the possibility to have multiple fibres, it may
happen that Ω1

X/k/π∗(Ω1
B/k) has torsion. A foliation constructed in this way is called

a fibration. More generally, we will say that a foliation is a fibration, if there is a blow
up of X such that, the foliation induced on it is a fibration.
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7.16 Definition. Let

F : 0 → L
ι−→ Ω1

X/k −→ G → 0

be a foliation on a surface X. Let C be a curve and h : C → X be an algebraic

morphism. We will say that C, or more precisely h is tangent to F if the composite

map

h∗(L) ι−→ p∗(Ω1
X/k) −→ Ω1

C/k

is the zero map. In this case we say that C is a compact leaf of the foliation.

Observe that situation (b) tells us that there are finitely many foliations on X such
that a point p : Bp → X , either satisfy the inequality in (a) or p is tangent to one of
these foliations.

7.17 Remark. More generally, given a foliation, and a morphism of a disk D → X,
we may say that the disk is tangent to the foliation: the definition is given in this case
as in definition 7.16 mutatis mutandis. We know, by the theorem of the existence and
unicity of the solution of differentials equations, that, if the quotient sheaf is locally free
around a point p ∈ X, then there is a unique disk D and a morphism h : D → X such
that h(0) = p and the image of D is tangent to the foliation. The image of h may be
non algebraic, in particular Zariski dense.

The Jouanoulou theorem tells us that, given a foliation on a surface, then either there
are only finitely many compact leaves or it is a fibration.

7.18 Theorem. Let X be a smooth projective surface and F be a foliation over it.

Suppose that F has infinitely many compact leaves, then F is a fibration.

The theorem above has the following important consequence in characteristic zero:

7.19 Theorem. Let XF be a smooth projective curve and D be a reduced effective

divisor over it. Let ε > 0. Then there is a constant Aε such that, for every p ∈
(XF \D)(F ) we have that

hXF /F (D)(p) ≤ (2 + ε)(χ(p) + N
(1)
D (p)) + Aε.

Because of points (a) and (b) above, to prove it we have to deal only with points
whose models are leaves of a given foliation. In this case, either they are only finitely
many, so we may suppose that their height is less then the involved constant Aε or they
are infinitely many. In this case we apply theorem 7.18 and we deduce that there is
a smooth projective curve C and a map g : X → C such that the model of each of
these points are contained in the fibres of h. By Zariski decomposition theorem, we
may suppose that the fibres of h are connected. But since the fibres of a morphism from
a variety to a curve are numerically equivalent, the heights of these points is uniformly
upper bounded. The conclusion follows.
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Proof: (of Theorem 7.18) We start with a local remark: Let D2 be a two dimensional
ball, D1 be a one dimensional ball and f : D2 → D1 be an analytic map. Let ω ∈ Ω1

D2
;

it defines a foliation on D2. Then each fibre of the map f is a leaf of the foliation if and
only if d(f)∧ω = 0. More precisely, ω will vanish along the fibres of f if and only if there
are an holomorphic function h and a holomorphic 1 form α such that ω = h ·d(f)+f ·α.
From this we deduce that each fibre of f is a leaf of the foliation defined by ω if and
only if ω ∧ df

f is holomorphic.
Suppose that

F : 0 → L −→ Ω1
X/k −→ G → 0

is the given foliation. It defines a global section ω ∈ H0(X, Ω1
X/k ⊗ L⊗−1). By the

remark above, we will conclude the proof if we show that the hypotheses imply that
there is a non constant meromorphic function f such that d(f) ∧ ω = 0.

Suppose that D is an effective divisor on X; suppose that over the open set U the
divisor D is defined by the equation f = 0. The same argument given above tells us that
D is a leaf of the foliation F if and only if df

f ∧ω ∈ H0(U,KX ⊗L−1). Consequently, if
D is snc, we have a natural map

· ∧ ω : Ω1
X/k(log(D)) −→ KX ⊗ L−1.

Let D1, . . . , Dn be effective divisors on X which are compact leaves of F . Taking a
suitable blow up of X we may suppose that the divisor D :=

∑
Di is snc. Consider

the map · ∧ ω defined above and denote by Nn the kernel of it. Observe that Nn is of
generic rank one.

A local computation (left as exercise) shows that, if X̃ → X is a blow up, F̃ the
induced foliation on X̃, and L̃ the involved sub line bundle of Ω1

X̃
, then h0(X̃;KX̃ ⊗

L̃−1) ≤ h0(X,KX ⊗ L−1). Consequently, if n is sufficiently big, then h0(X,Nn) ≥ 2.
Thus we may find two C–linearly independent logarithmic differential forms α1 and α2

such that:
– αi ∧ ω = 0;
– there is a meromorphic function h such that α1 = h · α2. Moreover, h is not

constant.
The lemma 7.20 below assures us that αi are closed. Consequently

0 = d(α1) = d(h) ∧ α2 − h · d(α2) = d(h) ∧ α2.

From this we conclude that h is a non constant meromorphic function on X such
that d(h) ∧ ω = 0. Thus the conclusion follows.

7.20 Lemma. Let α be a global logarithmic form on a compact complex surface.

Then d(α) = 0.

Sketch of Proof: The forms α and d(α) are integrable on X because they have only
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logarithmic poles. Consequetly, by Stokes Theorem
∫

X

d(α) =
∫

∂X

α.

Since X is without border, the last integral vanishes, consequently d(α) = 0.

8 the proof of the 1 + ε conjecture by McQuillan.

In this section we will give some details of the proof by McQuillan of the abc conjecture
6.6 in the case of curves. The proof uses tools from analytic geometry and the so called
Semistable reduction theorem.

Let’s recall the theorem we would like to prove:

8.1 Theorem. Let F be a function field, XF be a smooth projective curve over it and

D be a reduced divisor on XF . Let ε > 0. Then, for every p ∈ XF (F ) we have that

hKXF /F (D)(p) ≤ (1 + ε)(χ(p) + N
(1)
D (p)) + Oε(1).

The involved constant depending only on ε and on the couple (XF , D).

First of all we need to recall the semistable reduction theorem for curves. Let F be
a function field and XF be a curve over it. We saw that it is possible to find a surface
X → B with is is a model of XF . The model is not unique and, even if it is a smooth
surface, the morphism f : X → B may be not very nice: fibers of it may be singular
curves, or even non reduced. The semistable reduction theorem tells us that, making a
finite extension of B if necessary, we can find a model such that the fibers of f are as
nice as possible (in general we cannot hope that they are all smooth).

We need a definition:

8.2 Definition. Let F be a function field, XF be a smooth projective curve over it

and D be an effective reduced divisor over it. A model (X ,D) of the couple (XF , D) of

the couple (XF , D) is said to be semistable if, denoting by f : X → B the structural

morphism:

– X is a smooth projective surface and the fibres of f are connected;

– Let S ⊂ B be the divisor where f is not smooth; then the divisor D + f∗(S) is a

simple normal crossing divisor;

– if C is a rational curve contained in a fibre of f such that (C;D) = 0 then C2 6= −1.

8.3 Remark. (a) Notice that in particular every fibre of f is a reduced simple normal
crossing divisor;

(b) the third condition means that we cannot contract a rational curve contained in
the fibre keeping X smooth.

58



The semistable reduction theorem is the following (and we admit it in this section)

8.4 Theorem. Let XF be a smooth projective curve over F and D be a reduced

effective divisor over it. Then

– If the couple (XF , D) admits a semistable model and L/F is a finite extension,

then the couple (XF ⊗ L,D ⊗ L) over L admits a semistable model.

– There exists a finite extension F ′/F such that the couple (XF ⊗F ′, D⊗F ′) admits

a semistable model over the curve BF ′ .

The second tool we will use is specific of the analytic geometry: the theory of currents.
We cannot develop here all the details of the theory but we refer to for instance to [De]
(or any other book on analytic geometry).

Let’s recall some of the properties of the currents that we need.
Let X be a smooth variety of dimension n defined over the complex numbers.
– A (p, q)–form ω on X (or on a open set of it) is something which locally may be

written as
ω =

∑

|I|=p,|J|=q

fIJdzI ∧ dzJ

where
(i) I = (i1, . . . , ip), J = (j1, . . . , jq) are multi indices,
(ii) |I| := p, |J | := q,
(iii) dzI means dzi1 ∧ . . .∧dzip , dzJ means dzj1 ∧ . . .∧dzjq , where z1, . . . , zn are local

holomorphic coordinates,
(iv) fIJ are local C∞ functions.
We will denote by A(p,q)(X) the space of the (p, q) forms of X.
– A (p, q) current T is something which locally may be written as

T =
∑

|I|=n−p,|J|=n−q

TIJdzI ∧ dzJ

where everything is as above up to the fact that the TIJ are local distributions. We
will denote by D(p,q)(X) the space of the currents of type (p, q) over X. We can see
D(p,q)(X) as the topological dual of the space A(p,q)(X).

–If T is (p, q) current and ω is a (r, s) C∞ form, we can define T ∧ ω. It will be a
(p− r, q − s) current.

– if ω is a form of type (p, q) with compact support and T is a current of type (p, q)
then T (ω) ∈ C. We will use the notation T (ω) :=

∫
X

T ∧ ω.
– As in the case of forms and in the theory of distributions, we can differentiate

currents: If T is a current of type (p, q) then ∂T is of type (p − 1, q) while ∂T is a
current of type (p, q−1). We will denote by d the operator ∂ +∂ on currents. A evident
version of the Liebnitz law holds : Be careful: one can multiply only forms and currents,
and not two currents. We have that d2 = 0.
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– If ω is a form of type (n− p, n− q) it naturally defines a current Tω of type (p, q):
Tω(α) =

∫
X

ω ∧ α. A current of this kind is said to be smooth. Thus we have a natural
inclusion A(p,q)(X) ↪→ D(n−p,n−q)(X).

– A current T is said to be closed if dT = 0. Observe that, by definition, if T is
closed, then (dα) = 0. A current of type (1, 1) is said to be positive if, for every positive
(1, 1) form α with compact support we have that

∫
X

T ∧ α > 0.
–If f : X → Y is an analytic morphism and T is a current of type (p, q) on X, then

we can naturally define f∗(T ) as f∗(α) := T (f∗(α)). The current f∗(T ) is naturally a
(p, q) form on Y .

– If Z ⊂ X is an analytic subvariety, of dimension p, it naturally defines a current
[Z] of type (p, p); it is defined as [Z](α) :=

∫
Z

α. If Z is compact then the current [Z]
is closed.

– Suppose that X is compact. If L is a line bundle on X, we define its first Chern
class in the following way: fix a smooth metric ‖ · ‖ on L, let s be a local holomorphic
section of L, then the Poincaré–Lelong formula holds:

ddc log ‖s‖2 = [div(s)]− c1(L; ‖ · ‖)

where c1(L) is a (1, 1)–form depending only on L and the chosen metric, in particular
independent on s. If we choose another metric ‖ · ‖1 on L then there is a C∞ function
f such that

c1(L, ‖ · ‖)− c1(L, ‖ · ‖1) = ddc(f).

Consequently, if T is a closed (1, 1) form on X we may define unambiguously T (L) as∫
X

T ∧ c1(L, ‖ · ‖) where ‖ · ‖ is an arbitrary smooth metric on L.
– Suppose that X is compact. A Kähler metric ω on X is a closed positive (1, 1)

form. It easily defines a measure on X. The Fubini–Study form on the projective space
is Kähler. Consequently every projective variety is equipped with such a Kähler form.

– Let X be a compact complex manifold. Fix a finite covering U = {Ui} by open sets
of X each of which is biholomorphic to a open ball of the right dimension. For each Ui

fix an biholomorphic isomorphism of it with the ball. Let α be a (p, q) form over X. We
may define the Lp norm of α, by taking the sup of Lp norms of the restriction of it to
each Ui. This is not an intrinsic definition, but the topology on A(p,q)(X) associated to
it is intrinsic. In this way we may also define the space L(p,q)

p of forms with coefficients in
the spaces Lp (in particular with p = ∞). A current of type (p, q) defines an element of
the topological dual of L(p,q)

∞ . We denote the topological dual (with the weak topology)
of L(p,q)

∞ by (L(p,q)
∞ )∗

An important tool we will need is the following:

8.5 Theorem. Let X be a compact complex manifold equipped with a Kähler form

ω. Suppose that Tn is a sequence of closed positive currents of type (1, 1) on X. The
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Tn’s define currents
Rn : L(p,q)

∞ −→ C

α −→ Tn(α)
Tn(ω)

.

Then, for every sequence (Qn) of closed positive currents of type (1, 1) currents such

that, for every positive (1, 1) form alpha we have that Qn(α) ≤ Rn(α), there exists a

subsequence Qnk
converging, in the weak topology, to a closed positive current.

Proof: The only point is to prove that we can extract a sequence from the Qn’s which
is convergent. The limit will be closed because each of the Qn is closed.

Since X is compact and ω is positive, for each (1, 1) form α there exists a constant A

such that Aω±α is positive. Moreover, since the property of being positive is open, there
is a sufficiently small ε > 0 such that, if ‖β−α‖ < ε then Aω± βis again positive. This
implies that we may find a constant C such that the norm of Qn in the weak topology is
bounded by C. Consequently, by the Banach–Alaoglu theorem, the conclusion follows.

8.6 Remark. The Banach–Alaoglu theorem sais that the unit ball of (L(p,q)
∞ )∗ in the

weak topology is compact.

– Suppose that X is as before. If A ⊆ X is a subset, we will denote by IA the
characteristic function of A. Let E be an analytic subvariety of X. Let T be a closed
positive current of type (1, 1). Consider a sequence of functions fn which are smooth,
fn ≡ 1 in a neighborhood of E, with compact support and such that limn→∞ fn = IE .
The limit limn→∞ fnT is a closed positive current denoted by IET . This is called the
Skoda–El Mir Theorem. Denote by U the open set X \ U then we denote by IUT the
current T − IEU . The current IET is again closed and positive.

– Suppose that T is closed positive of type (1, 1) over X. Let ι : E ↪→ be a smooth
divisor on X. Then there is a closed positive current S on E such that IET = ι∗(S).
For a proof of this cf. [Ga theorem 6.6].

8.7 The proof of the strong ABC conjecture for curves. We begin the proof of Theorem
8.1. First of all we remark that in order to prove the theorem we can make a suitable
extension of F if necessary. Thus, by theorem 8.4, we may suppose that the couple
(XF , D) has a semistable model f : X → B with divisor D.Tensoring KX/k(D) with the
pullback of a line bundle on B with suitably big degree, we may suppose that the model
M of KXF /F (D) used to compute heights is nef and of the form KX/k(D) ⊗ f∗(M).
In particular we can fix a Kähler form ω on X and a metric on M in such a way that
c1(M) ≥ ω possibly only outside some vertical divisors.

8.8 Construction of the currents. Denote the projective bundle Proj(Ω1
X/k(logD)) →

X by π : P → X , by L the tautological bundle over it and by L1 the line bundle
L⊗ (f ◦ π)∗(M).
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Let Y be a smooth projective curve and g : Y → X be a morphism. The couple
(Y, g) defines a closed positive current TY of type (1, 1) over X :

TY :A(1,1)(X ) −→ C

α −→ TY (α) :=
∫

Y

g∗(α).

Remark that TY is closed by Stokes theorem and the projectivity of Y .
Let {(Yn, gn)} be a sequence of curves and morphisms whose image is not contained

in D. By the remark above,

Rn :=
TYn(·)

TYn(M)
≤ TYn(·)

TYn(ω)
.

Consequently, we may apply theorem 8.5 and deduce that we can find a subsequence
Rnk

converging to a closed positive current T of type (1, 1) on X .
Each of the gn lifts to a morphism g′n : Yn → P such that π ◦ g′n = gn. Thus the

sequence (Yn, g′n) define a sequence of closed positive currents T ′Yn
of type (1, 1) over P.

In order to prove the theorem it suffices to prove the following theorem:

8.8 Theorem. For every sequence (Yn, gn) as above and such that f ◦ gn is dominant,

we have that

lim inf
n

T ′Yn
(L1)

TYn(M)
≥ (1− ε).

8.9 Exercise. Prove that 8.8 implies 8.1.

In the sequel, we fix a sequence (Yn, gn) as in theorem 8.8 and such that

lim inf
n

T ′Yn
(L1)

TYn(M)
= lim

n

T ′Yn
(L1)

TYn(M)
= a.

Of course, if a = +∞ there is nothing to prove, thus we can suppose that a < +∞.
Theorem 8.8 is proved if we show that a ≥ 1− ε. We may suppose that

TYn(M)
deg(f ◦ gn)

−→ +∞ (8.10.1)

otherwise there is nothing to prove. Observe that, if pn ∈ XF (F ) is the point corre-
sponding to gn, then TYn (M)

deg(f◦gn) = hKXF /F
(D)(pn).

We can find a positive constant A such that L1⊗π∗(M⊗A) is nef on P. Consequently,
the same argument of the proof of 8.5 gives that the currents

R′n : A(1,1)(P) −→ C

α −→ T ′Yn
(α)

TYn(M)
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are uniformly bounded. Thus we can find a subsequence of the R′n converging to a
closed positive current T′ on of type (1, 1) on P. By construction we have

π∗(T′) = T.

The conclusion will follow if we show that

T′(L⊗ π∗(KX/B(D))−1) ≥ −ε. (8.11.1)

Let Z ⊂ X be the set of points where the morphism f is not smooth. It is a finite
set. Let IZ be the ideal sheaf of Z.

8.13 Restriction around the singularities. Since f : X → B is semistable, a local
computation shows that the cokernel of the natural inclusion f∗(Ω1

B/k) ↪→ Ω1
X/k(log(D))

is IZ⊗KX/B(D). Let h : X̃ → X be the blow up of X in Z and let E be the exceptional
divisor on it. Thus we have an exact sequence

0 → f∗(Ω1
B/k) −→ Ω1

X/k(log(D)) s−→ IZ ⊗KX/B(D) → 0 (8.13.1)

and the surjection s give rise to a surjection h∗(Ω1
X/k(log(D))) →→ h∗(KX/B(D)(−E)

thus to an inclusion
ι : X̃ −→ P. (8.14.1)

By construction π ◦ ι = h and ι∗(L) = h∗(KX/B(D)(−E). Let ∆ = ι(X̃ ); it is a divisor
in P. Denote by U the open set P \∆.

A main step of the proof is the following important lemma:

8.15 Lemma. We have that

π∗(IUT′) = 0.

This lemma is crucial: we may think about it in the following way: ∆ corresponds to
the tangent vectors of X which are vertical with respect to f . We will see in the proof,
that if a form α on X is such that π∗(α) has support in U , then α is dominated by
a positive form coming from B. consequently, condition 8.10.1 will imply the lemma.
Observe that we can also give an informal explanation of the lemma as follows: suppose
that there is a sequence of curves that contradict the strong ABC conjecture, then these
curves have to be not so ramified over B and with a very big area with respect to the
relative dualizing sheaf. The only way to have that is that they become more and more
vertical over B. Notice also that in this lemma we use the strength of the theory of
currents.
Proof: We fix Kähler forms ω on X and η on B. In order to prove the proposition it
suffices to prove the following: Let V be an open set of P such that V ∩ ∆ = ∅ (V
being the closure of V in the Euclidean topology), then π∗(IV T ) = 0. To prove this we
claim that there exists a constant AV (depending on V and the metrics) such that the
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following holds: if W is an open Riemann surface and h : W → X is an holomorphic
map such that the image of h′ : W → P is contained in V , then h∗(ω) ≤ AV (f ◦ h)∗(η).
The claim implies the proposition. Indeed, let α be a form on X such that the support
of π∗(α) is contained in U . Denote by Z the support of π∗(α); we may find a constant
B such that Bω ± α is positive. Moreover we can find a smooth positive function ϕ on
P which is always less or equal then one, it is identically one around Z and identically
zero around ∆. This implies that Bϕπ∗(ω)± π∗(α) is still positive. Let Y be a smooth
projective curve and g : Y → X be a morphism such that f ◦g is dominant, the image of
which is not contained in D. Let g′ : Y → P the induced map. By construction we have
that |T ′Y (π∗(α))| ≤ BT ′Y (ϕπ∗(ω)). By the claim, we can find constants Ai, depending
only on the support of ϕ, such that

T ′(ϕπ∗(ω)) ≤ A1

∫

Y

(f ◦ g)∗(η) ≤ A2 deg(f ◦ g).

The conclusion follows because of property 8.10.1.

Fix such a V , Observe that π(V ) is a closed set of X which do not contains the
singular points of the fibers Pi. By compactness of X, we can cover π(V ) by a finite set
of disks Bj not containing the Pi’s. We may restrict our attention to each of the Bj :
thus we may suppose that:

– X = {(z, w) ∈ C2 / |z| < 1 |w| < 1}, B = {z ∈ C /|z| < 1} and p(z, w) = z;

– ω =
√−1(dz ∧ dz + dw ∧ dw) and η =

√−1(dz ∧ dz);

– D = {w = 0} and the exact sequence 8.13.1 is the split exact sequence

0 → OXdz −→ OXdz ⊕OX
dw

w
−→ OX

dw

w
→ 0;

– consequently P = X × P1 and ∆ = X × {[0 : 1]}; we may then suppose that there
exists a positive constant a such that V ⊆ {(z, w)× [x : y] / |x|2 > a|y|2}.
– W := {z / |z| < 1} and h(z) = (h1; h2) and h′(z) = (h1; h2)× [h′1 : h′2

h2
].

The image of W via h′ is contained in V , we have that |h′1(z)|2 > a
∣∣∣h′2
h2

∣∣∣
2

. Thus
|h′2(z)|2
|h′1(z)|2 < 1

a . Since h(ω) =
√−1(|h′1|2 + |h′2|2)dz ∧ dz and h(η) =

√−1(|h′1|2)dz ∧ dz the
proposition follows.

We can find an ample line bundle N on X such that L ⊗ π∗(N) is ample on P,
consequently, IUT′(L ⊗ π∗(N) ≥ 0. By lemma 8.15, IUT′(π∗(N)) = π∗(IUT′(N)) = 0,
thus IUT′(L) ≥ 0.

On the other side, By the general properties of the closed positive currents, we may
find a current S on ∆ such that ι∗(S) = I∆T′. By construction, and again by lemma
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8.15, h∗(S) = T. Consequently

T′(L⊗ π∗(KX/B(D))−1) = (IU + I∆)T′(L⊗ π∗(KX/B(D))−1)

≥ I∆T′(L⊗ π∗(KX/B(D))−1)

= S(ι∗(L)⊗ h∗(KX/B(D))−1)

= S(−E).

8.16 Remark. If f is smooth, then the proof is complete. The general case is more
involved and as we can see the difficulties are localized around the singularities of f .

8.18 Roots of the singular fibres. In this subsection we will deal with the singular
fibres of f : X → B. We should notice the following things:

– The problem is localized near the points of X where the projection f is singular.
– Here we will use in an essential way that the model f : X → B is semistable.

This part also requires a delicate machinery: the theory of Deligne–Mumford stacks.
The reader who do not like stacks may refer to [Ga] where a proof without stacks is given
(nevertheless one should observe that on that proof one has to use singular varieties).
The main idea is to take roots of the divisors which are the singular fibres.

In the sequel we will denote by F =
∑

Fi a singular fibre of f ; observe that it is a
s.n.c. divisor. Over F there are the points P where the morphism f is not smooth. For
each of these points, denote by B and C the two components of the fibre which intersect
in P .

The main tool we need is the following:

8.18 Theorem. Let m > 0 be an integer. There is a Deligne–Mumford stack pm :
Xm → X , smooth over C such that:

– Xm is proper.

– Denote by V ⊂ X the open set X \ F then pm|V : Xm|V → V is an isomorphism.

– pm : Xm → X is a finite morphism.

– p∗m(Fi) = mF̃i and
∑

i F̃i is a simple normal crossing divisor on Xm.

Before we start the proof we need the following construction: Let Gm act on A1 by
multiplication. Then

[
Å1/Gm

]
the associated Artin Stack. A local computation shows

that if X is a scheme (or more generally a stack), a morphism X → [
A1/Gm

]
is a couple

(L, s) where L is a line bundle over X and s ∈ H0(X, L). In particular over
[
A1/Gm

]
we have the line bundle A1 → [

A1/Gm

]
with the section x (where A1 = Spec(C[x])).

The raise to the m–th power on A1 and Gm induces a map ϕm :
[
A1/Gm

] →[
A1/Gm

]
. If X is a scheme and (L, s) is a map from it to

[
A1/Gm

]
, then ϕm ◦ (L, s) is

the map giving the couple (L⊗m, s⊗m) on X.
Similarly the group of the m–th roots of unity µm acts on A1 and

[
A1/µm

]
is a

Deligne–Mumford stack (observe that we are using the fact that we are in characteristic
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zero). If Z is a scheme ands ∈ OZ is a global section over it, we may consider the finite
Z–scheme Ys,m := Spec(OZ [z]/(zm − s)) → Z. Over Ys,m there is a natural action
of µm as follows: the action is trivial on OZ and if ζ is a m–th root of unity, then
ζ(z) = ζ−1 · z. Let [Ys,m/µm] be the associated Deligne Mumford Stack. A map from
Z to

[
A1/µm

]
is the datum of a global section s ∈ OZ , and the stack [Ys,m/µm].

We have natural maps ι :
[
A1/µm

] → [
A1/Gm

]
and jm :

[
A1/µm

] → A1. From the
description above we deduce that the following diagram is cartesian:

[
A1/µm

] ι−−→ [
A1/Gm

]

jm

y
yϕm

A1 −−→ [
A1/Gm

]
.

Denote by Hm the preimage of Gm via jm. Observe that the map jm|Hm → Gm is an
isomorphism: usually one can informally describe this fenomenon by saying that the
stacky structure of [A1/µm] is concentrated in 0.

8.19 Definition. Let X be a scheme, L be a line bundle over it and s ∈ H0(X,L).
By construction we have a map k : X → [A1/Gm]. Consider the cartesian diagram

Xm −−→ [
A1/Gm

]

km

y
yϕm

X −−→ [
A1/Gm

]
.

We will call the stack km : Xm → X the stack of the m–th root of s.

By construction, a map from a scheme Z to Xm is a set (h,M, ι, t) where h : Z → X is
a morphism, M is a line bundle over Z, ι : M → h∗(L) is an isomorphism of line bundles
and t ∈ H0(Z, M) is a global section such that ι(t⊗m) = h∗(s). Let U := X \ {s = 0};
then, as before, k−1

m (U) km→ U is an isomorphism; thus the stacky structure of Xm is
concentrated over {s = 0}.

8.20 Lemma. Xm is a Deligne–Mumford stack.

Proof: We know that it is an Artin Stack. Thus to verify the lemma we may work étale
locally on X. Consequently we may suppose that L is trivial so the map X → [

A1/Gm

]
lifts to a map X → A1. This implies that Xm = X ×A1

[
A1/µm

]
. Since

[
A1/µm

]
is a

Deligne–Mumford stack, the conclusion follows.
In general Xm may be singular, even not normal, but if X is smooth and {s = 0} is

a smooth divisor, then we have:

8.21 Lemma. Suppose that X is a smooth variety and {s = 0} is a smooth divisor,

then Xm is smooth.

Proof: We may work locally in the analytic topology. Let D = {x ∈ C / |x| < 1}.
Suppose that X = D and s = x; in this case we see that Xn = [D/µn] where if ζ is an
m–root of unity then the action is ζ(x) := ζ−1 · x.
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In general may suppose that X = Dn with coordinates x1, . . . , xn and s = x1. Denote
by p : X → D the projection on the first factor. We have have a cartesian diagram

Xm −−→ [D/µm]y
y

X
p−−→ D.

Since [D/µm] is smooth and the morphism p is smooth, the conclusion follows.

We can now prove theorem 8.18:
Proof: (Of theorem 8.18) Let {P1, . . . , Pr} be the set of points of X where f is not
smooth and let X 0 = X \ {P1, . . . , Pr}. The restriction F 0 of F to X 0 is a smooth
divisor.

Let X0
m → X 0 be the stack of m–roots of F 0. By lemma 8.21, Xm is a smooth

Deligne–Mumford stack.
We now study the local structure of Xm in the preimage of a neighborhood of the

Pi’s.
Let Z ⊂ A3 be the variety given by zm = xy; µm acts over it by ζ(z) = ζ−1 · z,

ζ(x) = x and ζ(y) = y. Let B3 be the unit ball in C3 and B∗3 := B3 \ {(0, 0, 0)}. Denote
by Z1 the analytic variety Z ∩ B3 and by Z0 the analytic variety Z ∩ B∗3. Eventually
denote by Z̃0 the smooth Deligne–Mumford stack [Z/µm].

Let D2 be a open neighborhood of one of the Pi’s which is biholomorphic to a 2–
dimensional ball centered in Pi. We may suppose that z1 and z2 are coordinates on D2

and that F is given by the equation z1z2 = 0. Let D∗
2 := D2 \ {P}. The restriction of

X0
m to D∗

2 is isomorphic to the stack Z̃0. The stack Z̃0 is an open set inside the stack
[Z1/µm] which is normal but not smooth.

We will now construct a smooth Deligne Mumford stack W with an open set W0

such that:
– W0 is isomorphic to Z̃0;
– There is a finite map W → D2.
This is enough to conclude the proof: Indeed, in order to obtain Xm, we glue the

stack X0
m with the stacks W ’s along the Z̃0’s.

Let ∆ be the 2 dimensional unit ball with coordinates ξ and η. Denote by ∆∗ the
surface ∆ \ {(0, 0)}. Let G be the group µp × µp and H the subgroup µp × {1}. We let
act G on ∆ in the following way: (ζ1, ζ2)(ξ) := ζ1 ·ζ−1

2 · ξ, (ζ1, ζ2)(η) := ζ−1
1 ·η. We have

that ∆/H ' Z1 via the map (ξ, η) 7→ (ξm, ηm, ξη). Since the action of H on ∆∗ is free,
we deduce that [∆∗/H] ' Z0. The action of µm ' G/H on Z0 coincide with the action
of µm on it induced by the stack structure of Xm. Consequently [∆∗/G] ' [Z0/µm].
Observe that, by construction, ∆ is a smooth Deligne–Mumford stack.

The map ∆ → D2 given by (ξ, η) 7→ (ξm, ηm) give rise to a map k : [∆/G] → D2. The
restriction of k to [∆∗/G] coincide with the restriction of the projection pm : X0

m → X 0

to the preimage of D∗
2 . Consequently we may put W := [∆/G] and conclude.

The idea of the proof now is the following: We repeat the argument we made before
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with Xm replacing Xm. Since F̃i = 1
mp∗m(Fi) we will see that the contribution given

by the singularities will be smaller then before. Thus, taking m sufficiently big, the
conclusion will follow.

Let Dm be the divisor p∗m(D) over Xm. It is a snc divisor. Denote by Ω1
Xm/k(log(Dm))

the sheaf of logarithmic differentials over Xm with poles along Dm, by πm : Pm → Xm

the projective bundle Proj(Ω1
Xm/k(log(Dm))) → Xm and by Lm the tautological line

bundle over it. We also fix a Kähler form ωm on Xm.
For every smooth projective curve Y with a morphism g : Y → X such that f ◦ g :

Y → B is surjective denote by Ym the normalization of a irreducible component of the
stack Y ×X Xm. Local computations give that:

– The projection Ym → Y is finite.
– By the Hurwitz formula we obtain that

χ(Ym) ≤ χ(Y ) + C deg(f ◦ g) (8.22.1)

For a suitable constant C. Indeed the projection rm : Ym → Y is ramified at most over
the points where the image of Y intersects the singular fibres Fi. Moreover, a local
computation shows that over these points, the index of ramification is m. Since g(Y )
intersect the singular fibres in at most deg(f ◦ g) points and over each of these points
the local degree of the ramification point is 1− 1

m the conclusion follows.
– If N is a line bundle over Y , then deg(r∗m(N)) = deg(N).

The following definition is natural:

8.23 Definition. Let Y be a smooth proper Deligne–Mumford of dimension one. For

each closed point P on Y denote by GP the stabilizer of P in Y; notice that it is a

finite group. Let D
∑

i nP P be an effective divisor on it, then we define N
(1)
D (Y ) :=∑

i
1

|GP | min 1, nP .

Of course the definition above naturally generalize to stacks the corresponding defi-
nition on smooth projective curves. Moreover we have:

– There is a constant C such that

N
(1)
Dm

(Ym) ≤ N
(1)
D (Y ) +

1
m

C.

From the sequence (Yn, gm) we can construct a sequence (Yn,m; gn,m).
We will denote by fm : Xm → B the map f ◦ km. A local computation shows that

KXm/k(Dm) = p∗m(KX/k(D))((m− 1)
∑

F̃i).

Consequently, the remarks above imply that if we prove that

lim inf
n→∞

χ(Yn,m) + N (1)(Ym,n)
deg(g∗m,n(KXm/k(Dm)))

≥ 1− ε

then Theorem 8.1 follows.
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As before, we can find a line bundle Mm on B such that c1(KXm/k(Dm)⊗f∗m(Mm)) ≥
αωm and c1(p∗m(KX/k(D))) ≥ αωm (for a suitable positive α) outside some vertical
divisors. Denote by Mm the line bundle KXm/k(Dm)⊗ f∗m(Mm).

From the sequence sequence (Yn,m; gn,m) we may construct a sequence of closed
positive currents

TYn,m
:A(1,1)(Xm) −→ C

α −→ TYn,m
(α) :=

∫
Yn,m

g∗(α)

deg(gn,m(Mm))
.

As before, we may take a subsequence of the Yn,m and the sequence of the TYn,m
will

converge to a current Tm on Xm which is closed and positive of type (1, 1). Observe
that (pm)∗(Tm) = T.

The maps gn,m lift to maps g′n,m : Yn,m → Pm and as before we can construct a
closed positive current T′ of type (1, 1) on Pm such that (πm) ∗ (T′m) = T′m.

As in the case of X , the map fm give rise to an exact sequence

0 → A −→ Ω1
Xm/k(log(Dm)) sm−→ IZm ⊗KXn/B(Dm) → 0 (8.24.1)

A is the saturated of the image of Ω1
B/k inside Ω1

Xm/k(log(Dm)) via f∗ and Zm is a
zero cycle supported on the fibres over the Pi and locally given by the ideal (ξm, ηm).
Denote by Zm cycle which near Zm is given by the ideal (ξ, η) (it is as if we take the
reduced cycle associated to Zm).

Let hm : X̃m → Xm be the blow up of Xm on Zm and by En the exceptional divisor
on it. The exact sequence 8.24.1 give rise to an inclusion

ιm : X̃m −→ Pm

which is the analogue of 8.14.1. Of course, again we have πm ◦ ιm = hm. Again to check
this it suffices to work locally, thus we may suppose that Xm = D2 with coordinates
(ξ, η) and the projection is (ξ, η) → (ξη)m (the details are left as exercise). Denote by
∆m the image ιm(X̃m) and by Um the open set PM \∆m.

In the same way of 8.15 we can prove the following:

8.25 Lemma. We have that

(πm)∗(IUmT′m) = 0.

Moreover, there is a closed positive current Sm on X̃m such that

(ιm)∗(Sm) = I∆mT′.

The conclusion will follow if we prove that Sm(−Em) ≥ −ε.
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Again a local computation shows that we have a commutative diagram

X̃m −−→ Xm

qm

y
ypm

X̃ p−−→ X
with the following properties:

– (qm)∗(Sm) = S;
– qm ∗ (E) = mEm.
Indeed, if D2 with coordinates (ξ, η) is a open set of Xm and D2 with coordinates

(z1, z2) is a open set of X ; then the map pm is the map pm(ξ, η) = (ξm, ηm). The blow
up of D2 are locally given by (ξ, v) → (ξ, ξv) on Xm and by (z1, u) → (z1, z1u) on X
with exceptional divisors ξ = 0 and z1 = 0 respectively. The commutative diagram and
the properties follow.

The conclusion of the proof is now straightforward:

Sm(−Em) = Sm(− 1
m

q∗m(E))

= − 1
m
· (qm)∗(Sm)(E)

= − 1
m
· S(E).

Since we can take m as big as we want, the conclusion follows.
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