Algèbre linéaire

Réduction de bases de réseaux

Gilles Villard

C2, Dinard, 12 octobre 2012

vendredi 12 octobre 12

Codage, cryptographie, algèbre linéaire

- Systèmes algébriques
- Matrices creuses
- Corps, courbes
- Réseaux

Introduction

Algebraic complexity over an abstract field K

$$n imes n$$
 matrix product: MM(n) operations in K $O(n^3), O(n^\omega) \ \omega < 2.373$

 $\mathsf{MM} \preceq \mathsf{Det} \preceq \mathsf{MM}$

 $\mathsf{LinSys} \preceq \mathsf{MM} \approx \mathsf{Det}$

Ex: systèmes polynomiaux structurés

[Strassen 69, 73] [Bunch & Hopcroft 74, Baur & Strassen 83]

Matrix determinant and integer bit size

 $A \approx \begin{bmatrix} -63 & -76 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \in \mathbb{Z}^{1000 \times 1000}$

 $\det A =$

det $A \approx 3000$ bits

7557041078751621873778514218105628575736544821071117791015169282779519913510110432302197230725566924930763360957613499831109902248302607450664376385807267842355541699673047478389617481039836624518526363154700005631393607356941192361310279508796103069618004364042676569631325666271159580155842259375852142984157518298261391177949599445375060324663987666371439654886930071845126563919276070256219889391940050300667105267731713166725306791285680785814842687993496196305689602823362990260042383292765535813290742352632036359143787341724347841266391132497063331546942158730099370955431285088519887399633764311479943453505350340088309718030140978396741731129562

Bit complexity over the integers Univariate polynomials

bit cost \leq algebraic cost \times output size

Ex: determinant bit size $\leq O^{\sim}(n \log ||A||)$

Computing the determinant: $\leq O^{\sim}(MM(n) \times n \log ||A||)$

Bit complexity over the integers Univariate polynomials

bit cost \leq algebraic cost \times output size

Ex: determinant bit size $\leq O^{\sim}(n \log ||A||)$

Computing the determinant: $\leq O^{\sim}(MM(n) \times n \log ||A||)$

Matrix determinant and integer bit size

$$A \approx \begin{bmatrix} 18 & 71 & \dots \\ -63 & -76 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \in \mathbb{Z}^{1000 \times 1000} \quad \det A \approx 3000 \text{ bits}$$

Time ratio determinant / matrix product

 $A \approx \begin{bmatrix} 2003132595943191078133594716658 & 3783476293416646707009935618484 & \dots \\ -23894451835815687560241235389 & -27572977560418555480185548397 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \in \mathbb{Z}^{8 \times 8}$

 $\log_{10} \operatorname{cond}(A)$

Floating point precision

 $A \approx \begin{bmatrix} 2003132595943191078133594716658 & 3783476293416646707009935618484 & \dots \\ -23894451835815687560241235389 & -27572977560418555480185548397 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \in \mathbb{Z}^{8 \times 8}$

 $\log_{10} \operatorname{cond}(A)$

 $A \approx \begin{bmatrix} 2003132595943191078133594716658 & 3783476293416646707009935618484 & \dots \\ -23894451835815687560241235389 & -27572977560418555480185548397 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \in \mathbb{Z}^{8 \times 8}$

 $\log_{10} \operatorname{cond}(A)$

vendredi 12 octobre 12

Floating point precision

Floating point QR factorization (Householder)

2.66 GHz Intel core i7

Seconds

Floating point QR factorization (Householder)

2.66 GHz Intel core i7

Integer lattice basis reduction

n = 500, 10000 bits knapsack

Integer lattice basis reduction

Time spent with the

different algorithms

or precisions

n = 500, 10000 bits knapsack

Integer lattice basis reduction

n = 500, 10000 bits knapsack

vendredi 12 octobre 12

Last 10 years progress

System solution and integer bit size

$$A \approx \begin{bmatrix} 18 & 71 & \dots \\ -63 & -76 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix} \in \mathbb{Z}^{1000 \times 1000} \quad \text{output sizes} \approx 3000 \text{ bits}$$

Time ratio Ax=b solution / matrix product

Integer Hermite normal form

(random matrices)

[Micciancio, Warinschi 2001] [Pernet, Stein 2009]

Sage 8 bits 32 bits 128 bits 256 bits 512 bits n0.2-0.2 500.1 - 0.10.7 - 0.82.7 - 2.912.454.1 - 5.42506.6 - 7.133.6 - 37.0102.8 - 110.7470.22 24.8 - 26.638.8 - 43.5500 179.4 - 187.2534.7-566.1 2169.41 1000 164.9 - 191.1266.3 - 282.81081.4-1143.0 2804.9-3149.9 10506 2837.5 1500.4 2000 11537.317105.9 4000

Integer Hermite normal form

(random matrices)

[Micciancio, Warinschi 2001] [Pernet, Stein 2009]

Seconds

	Sage											
n	8 bits	32 bits	128 bits	256 bits	512 bits							
50	0.1 - 0.1	0.2–0.2	0.7–0.8	2.7 – 2.9	12.45							
250	4.1 - 5.4	6.6 - 7.1	33.6 - 37.0	102.8 - 110.7	470.22							
500	24.8 - 26.6	38.8 - 43.5	179.4 - 187.2	534.7 - 566.1	2169.41							
1000	164.9 - 191.1	266.3-282.8	1081.4-1143.0	2804.9-3149.9	10506							
2000	1500.4	2837.5										
4000	11537.3	17105.9										

Basic complexity bounds

Knuth-Schönhage approach

Essentially optimal matrix inversion

Polynomial lattice reduction

Integer lattice reduction

Ratio w.r.t $O^{\sim}(MM(n) \log A)$ + output size	1	$n^{0.323}$	$\operatorname{cond}(A)$	n	> n
Ax=b					
Determinant Smith form					
Inversion					
Characteristic polynomial					
Hermite form					
Lattice reduction					

Ratio w.r.t $O^{\sim}(MM(n) \log A)$ + output size	1	$n^{0.323}$	$\operatorname{cond}(A)$	n	> n
Ax=b	$K[x] \hspace{0.1 in} \mathbb{Z}$ 2003, 2005				
Determinant Smith form	$K[x] \hspace{0.1 in} \mathbb{Z}$ 2003, 2005				
Inversion					
Characteristic polynomial					
Hermite form					
Lattice reduction					

Ratio w.r.t $O^{\sim}(MM(n) \log A)$ + output size	1	$n^{0.323}$	$\operatorname{cond}(A)$	n	> n
Ax=b	K $[x]$ \mathbb{Z} 2003, 2005				
Determinant Smith form	K $[x]$ \mathbb{Z} 2003, 2005				
Inversion	K[<i>x</i>] (2005) 2008		ℤ 2008		
Characteristic polynomial		$egin{array}{cc} {\sf K}[x] & \mathbb{Z} \ {\sf 2005} \end{array}$			
Hermite form					
Lattice reduction					

Ratio w.r.t $O^{\sim}(MM(n) \log A)$ + output size	1	$n^{0.323}$	$\operatorname{cond}(A)$	n	> n
Ax=b	K $[x]$ \mathbb{Z} 2003, 2005				
Determinant Smith form	$K[x] \hspace{0.1 in} \mathbb{Z}$ 2003, 2005				
Inversion	K[<i>x</i>] (2005) 2008		ℤ 2008		
Characteristic polynomial		$egin{array}{cc} {\sf K}[x] & \mathbb{Z} \ {\sf 2005} \end{array}$			
Hermite form	K[<i>x</i>] 2011			ℤ 1991, 1996	
Lattice reduction	K[<i>x</i>] 2003				\mathbb{Z}

Linear system solution

$A \in \mathbb{Z}^{n \times n}$

[Storjohann 2003-2005] [Moenck, Carter 1979]

$$\mathbb{Z}: O^{\sim}(\mathsf{MM}(n)\log ||A||)$$
$$\mathsf{K}[x]: O^{\sim}(\mathsf{MM}(n)d)$$

Hint: iterative refinement, high order lifting, doubling argument

Diophantine linear systems

[Giesbrecht 1997] [Mulders & Storjohann 1999]

---> Hermite normal form of a random matrix

[Storjohann 1996] [Micciancio, Warinschi 2001] [Pernet, Stein 2009]

[Eberly, Giesbrecht, V. 2000] [Storjohann 2003, 2005]

 $\mathbb{Z}: O^{\sim}(\mathsf{MM}(n)\log ||A||)$ $\mathsf{K}[x]: O^{\sim}(\mathsf{MM}(n)d)$

Hint: via the Smith form Cramer's rule successive deflations high order lifting

$$A \in \mathbb{Z}^{n \times n}$$

$A \in \mathbb{Z}^{n \times n}$

$$Ax = b$$

$$x_i = rac{p_i}{q_i}$$
 $q_i pprox s_n$ the largest invariant factor of A

								2	0	0	0	0	0
	1570	1744	-1450	-306	-4216	2220 -		0	2	0	0	0	0
	-884	16502	18222	9044	-6318	-1112		O		U	Ŭ	Ŭ	Ŭ,
τ	424	574	-410	0	-1198	724	τ	0	0	4	0	0	0
/	640	-25452	-26672	-13644	11160	612	V =	0	0	0	124	0	0
	-134	8572	8810	4714	-3844	4		0	0	0	0	104	\cap
	348	-408	328	116	980	-488		U	U	0	0	124	0
								0	0	0	0	0	4340

$A \in \mathbb{Z}^{n \times n}$

$$Ax = b$$

$$x_i = rac{p_i}{q_i}$$
 $q_i pprox s_n$ the largest invariant factor of A

								2	0	0	0	0	0
	1570	1744	-1450	-306	-4216	2220		0	2	0	0	0	0
	-884	16502	18222	9044	-6318	-1112		U		U	U	V	U
τ	424	574	-410	0	-1198	724	τ	0	0	4	0	0	0
J	640	-25452	-26672	-13644	11160	612	V =	0	0	0	124	0	0
	-134	8572	8810	4714	-3844	4		0	0	0	\circ	104	
	-348	-408	328	116	980	-488		0	0	0	0	124	
								0	0	0	0	0	4340

$A \in \mathbb{Z}^{n \times n}$

$$Ax = b$$

$$x_i = rac{p_i}{q_i}$$
 $q_i pprox s_n$ the largest invariant factor of A

								2	0	0	0	0	0
	1570	1744	-1450	-306	-4216	2220 -		0	2	0	0	0	0
	-884	16502	18222	9044	-6318	-1112		O		U	Ŭ	Ŭ	Ŭ
τ	424	574	-410	0	-1198	724	τ7	0	0	4		0	0
J	640	-25452	-26672	-13644	11160	612	V =	0	0	0	124	Q	0
	-134	8572	8810	4714	-3844	4		\cap	\cap	\cap		101	0
		-408	328	116	980	-488		U	U	0	0	124	
								0	0	0	0	0	

$A \in \mathbb{Z}^{n \times n}$

$$Ax = b$$

$$x_i = rac{p_i}{q_i}$$
 $q_i pprox s_n$ the largest invariant factor of A

							(2	0	0	0	0	0
	1570	1744	-1450	-306	-4216	2220 -		2	2		0	0	0
	-884	16502	18222	9044	-6318	-1112	_	-				Ū	
T	424	574	-410	0	-1198	724	T/	0	0	4		0	0
)	640	-25452	-26672	-13644	11160	612	V =	0	0	0			0
	-134	8572	8810	4714	-3844	4	_	\cap	0	0			
		-408	328	116	980	-488		U	U	0	0		
								0	0	0	0	$\widetilde{0}$	

Basic complexity bounds

Knuth-Schönhage approach

Essentially optimal matrix inversion

Polynomial lattice reduction

Integer lattice reduction

Knuth-Schönhage

[Knuth 1970] [Schönhage 1971] [Moenck 1973]

Recursive tree

Knuth-Schönhage

vendredi 12 octobre 12

Knuth-Schönhage

vendredi 12 octobre 12
Knuth-Schönhage

Knuth-Schönhage

Gcd operations on β bits integers: $M(\beta) \log \beta$

Minimal approximant bases

 $\begin{bmatrix} -x + x^{2} + x^{3} + x^{4} & x^{3} \\ 1 + x - x^{2} + x^{3} & -1 - x - x^{4} \\ 1 - x + x^{4} & 1 - x + x^{2} + x^{4} - x^{3} \end{bmatrix}$

Minimal approximant bases

 $N(x)A(x) \equiv 0 \mod x^d ?$

First consider the lowest order terms

$$\begin{bmatrix} -x & 0 & 0 \\ 0 & -x^2 & 0 \\ 1 & -x & -x \end{bmatrix} \begin{bmatrix} x^2 - x & 0 \\ 1 - x^2 + x & -1 - x \\ 1 - x & 1 + x^2 - x \end{bmatrix} \equiv 0 \mod x^2$$

$$A(x) \qquad N_1(x)\tilde{A}(x) \equiv x^{d/2}R(x)$$

vendredi 12 octobre 12

Restart from the truncated residue

$$N_2 = \begin{bmatrix} -x^2 & 0 & 0 \\ x & 1-x & 1 \\ -x & -1 & -1-x \end{bmatrix}$$

$$A(x) \qquad N_1(x)\tilde{A}(x) \equiv x^{d/2} R(x)$$

$$\tilde{R}(x) \qquad N_2(x)\tilde{R}(x) \equiv 0 \mod x^{d/2}$$

$$\begin{bmatrix} x^3 & 0 & 0\\ 1-x^2 & x^3-x^2-x & -x\\ -1+x^2-x & -x^2+x & x^2+x \end{bmatrix} A(x) \equiv 0 \mod x^4$$

$$A(x) \qquad \underbrace{N_1(x)}_{\tilde{A}(x)} \equiv x^{d/2} R(x) \qquad \underbrace{N_2(x)}_{N_1(x)} A(x) \equiv 0 \mod x^d$$
$$\widetilde{R}(x) \qquad \underbrace{\tilde{R}(x)}_{N_2(x)} \tilde{R}(x) \equiv 0 \mod x^{d/2}$$

vendredi 12 octobre 12

Minimal approximant bases \approx matrix product $N(x)A(x) \equiv 0 \mod x^d$

log d steps One matrix product of degree *d* Two matrix products of degree *d*/2 ... *d* constant matrix products

$$O^{\sim}(\mathsf{MM}(n,d))$$

[Beckermann, Labahn 1994] [Giorgi, Jeannerod, V. 2003]

Basic complexity bounds

Knuth-Schönhage approach

Essentially optimal matrix inversion

Polynomial lattice reduction

Integer lattice reduction

	34	- 53	-41	42	-23	-74	-42	-10	56
<u>⊭</u> :=	33	-40	-33	89	- 8	-81	- 89	93	- 99
	-64	-1	-30	55	-36	-70	80	- 59	66
	- 55	-14	14	-87	9	27	25	-84	9
	- 29	-77	-10	25	61	34	93	54	62
	- 76	- 56	-40	94	-67	67	29	-42	8
	3	-37	-73	-13	- 58	48	- 94	82	48
	53	58	26	-82	-93	43	50	60	46
	-33	-35	- 76	72	64	82	77	-91	78

> > A:=RandomMatrix(9,9);

1						· · · · · · · · · · · · · · · · · · ·			
[>									
> B:=1/A;	;								
	718867779677771	370831999591585	309014794005279	110101829987455	31943361748978	47987727329019	134522949617691	674027869533223	504920365344469
	94976580352300148	94976580352300148	47488290176150074	94976580352300148	23744145088075037	94976580352300148	23744145088075037	94976580352300148	94976580352300148
	51070303483007363	20768241926457653	17634479026829359	46555916660652219	7997668680155107	27072059120180677	5155810892969874	12202076902782199	8545015569886879
	6363430883604109916	6363430883604109916	3181715441802054958	6363430883604109916	1590857720901027479	6363430883604109916	1590857720901027479	6363430883604109916	6363430883604109916
	7297027484998171	21755927430190784	8654641928475533	15390411887609778	4949823496906637	10500794672814898	6697258494484534	10792689242824076	18278379253416379
	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479
	1103466647353453	7676207005015613	1105366422013129	15593232730339549	810000743524982	6466422855851044	2542356795219104	6119360796657798	2646576426332056
	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479
	16734410381339997	10797479249553819	959655585334793	13576202591225725	2781878616003364	30859830715258307	1497372714984050	30973807044462049	10401400101999805
в :=	6363430883604109916	6363430883604109916	3181715441802054958	6363430883604109916	1590857720901027479	6363430883604109916	1590857720901027479	6363430883604109916	6363430883604109916
	2437697568135695	4588032906688828	7868542124985355	3564855319079428	458030332293138	5595484148434489	901428018815201	242158342221146	2088839268507045
	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479	1590857720901027479
	9365189585916853	46583341843460593	6770319170809549	33035115806165079	3831360618558680	5978328647990119	6610373772075073	46347817219431339	27949290441506885
	6363430883604109916	6363430883604109916	3181715441802054958	6363430883604109916	1590857720901027479	6363430883604109916	1590857720901027479	6363430883604109916	6363430883604109916
	28053732991686229	3963459546062293	7242872810696229	20054906889676997	5950185181054409	11267978124870407	5599359176716554	1721034525794485	15302371539176611
	6363430883604109916	6363430883604109916	3181715441802054958	6363430883604109916	1590857720901027479	6363430883604109916	1590857720901027479	6363430883604109916	6363430883604109916
	22323730289620027	68466183019896695	3426768764295023	50056500744294437	2435023106885114	1910967623821859	5203496122478757	29203833917781669	24499589571635583
	6363430883604109916	6363430883604109916	3181715441802054958	6363430883604109916	1590857720901027479	6363430883604109916	1590857720901027479	6363430883604109916	6363430883604109916

Transference theorem and Kronecker indice Minimal nullspace basis (generic case)

\overline{x}	0	-x + 1	x-1
2x + 2	0	x	-x-1
-2x	-x + 2	-2x+2	2 x
-2x - 2	-x + 2	2x + 2	-x - 2
-2	2x + 2	-2x - 2	-x
-x - 2	-x - 1	-x	0
x-2	2x - 1	-2	2 x
2x - 2	-x + 1	x-1	-2x

Transference theorem and Kronecker indice Minimal nullspace basis (generic case)

$A \in \mathsf{K}[x]^{n \times n}$

$A \in \mathsf{K}[x]^{n \times n}$

Minimal approximant bases

→ minimal nullspace basis

$$A \in \mathsf{K}[x]^{n \times n}$$

$A \in \mathsf{K}[x]^{n \times n}$

Transference theorem

$\log d$
steps

Matrix product $n \times n \quad d$ Two matrix products $n/2 \times n/2 \quad 2d$

log d steps Matrix product $n \times n$ dTwo matrix products $n/2 \times n/2$ 2d...

Computing the factorization:

 $O^{\sim}(\overline{\mathsf{MM}(n,d)})$

Matrix inversion:

$$O^{\sim}(n^2 \times nd)$$

[Giorgi, Jeannerod, V. 2003]

Non generic minimal nullspace basis

[Zhou, Labahn, Storjohann 2012]

Integer matrix inversion

[Storjohann 2008]

A =	-93	-32	8	44
	-76	-74	69	92
	-72	-4	99	-31
	-2	$\overline{27}$	29	67

Integer matrix inversion

[Storjohann 2008]

Outer product adjoint formula

$$A^* \equiv \frac{\det A}{s_n} v_n u_n + \frac{\det A}{s_{n-1}} v_{n-1} u_{n-1} + \dots + \frac{\det A}{s_1} v_1 u_1 \mod \det A$$

Integer matrix inversion

[Storjohann 2008]

"Generic matrix" (small condition number)

 $O^{\sim}(n^3 \log \|A\|)$ bit operations

→ General case

The determinant should not be too small w.r.t. the adjoint matrix May be modeled in terms of the condition number $||A|| ||A^{-1}||$

$$O^\sim(n^3\log\|A\|+n^3\log\operatorname{cond}(A)))$$
 bit operations

Basic complexity bounds

Knuth-Schönhage approach

Essentially optimal matrix inversion

Polynomial lattice reduction

Integer lattice reduction

$$\begin{bmatrix} 2x^2 & 2x^2+1 \\ 2x^3+x^2+2x+2 & 2x^3+x^2+1 \\ 2x^2+1 & 2x^2+2 \end{bmatrix}$$

Unimodular column transformation

$$\begin{bmatrix} 2 & 2x^2 + 1 \\ 2x + 1 & 2x^3 + x^2 + 1 \\ 2 & 2x^2 + 2 \end{bmatrix}$$

$$\begin{bmatrix} 2x^2 & 2x^2+1 \\ 2x^3+x^2+2x+2 & 2x^3+x^2+1 \\ 2x^2+1 & 2x^2+2 \end{bmatrix}$$

2

 $2x^2 + 2$

$$\begin{bmatrix} 2 & 2x^2 & 2x^2 + 1 \\ 2x^3 + x^2 + 2x + 2 & 2x^3 + x^2 + 1 \\ 2x^2 + 1 & 2x^2 + 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2x^2 + 1 \\ 2x + 1 & 2x^3 + x^2 + 1 \\ 2 & 2x^2 + 2 \end{bmatrix}$$

Unimodular column transformation212x+112222

Polynomial basis reduction

Non singular square case

[Giorgi, Jeannerod, V. 2003] [Gupta, Sarkar, Valeriote, Storjohann 2010]

A(x)U(x) = R(x)? Minimal degrees?

Polynomial basis reduction

Non singular square case

[Giorgi, Jeannerod, V. 2003] [Gupta, Sarkar, Valeriote, Storjohann 2010]

A(x)U(x) = R(x)? Minimal degrees?

Phase 1. Translation into a "regular case": U small

High order lifting or Linearization via the Hermite form

Polynomial basis reduction

Non singular square case

[Giorgi, Jeannerod, V. 2003] [Gupta, Sarkar, Valeriote, Storjohann 2010]

A(x)U(x) = R(x)? Minimal degrees?

Phase 1. Translation into a "regular case": U small

Phase 2. Solve a minimal approximant problem

Hint:
$$A(x)U(x) = R(x) \iff [A(x) - I] \begin{bmatrix} U(x) \\ R(x) \end{bmatrix} \mod x^k$$

Square case

[Giorgi, Jeannerod, V. 2003] [Gupta, Sarkar, Valeriote, Storjohann 2010]

Basic complexity bounds

Knuth-Schönhage approach

Essentially optimal matrix inversion

Polynomial lattice reduction

Integer lattice reduction

1000000	704155	495834	349144	245851
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
1	0	0	0	0

1000000	704155	495834	349144	245851
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
1	0	0	0	0

Unimodular column operations

Γ	1000000	704155	495834	349144	245851]
	0	0	0	0	1
	0	0	0	1	0
	0	0	1	0	0
	0	1	0	0	0
	1	0	0	0	0

Unimodular column operations

"Small" norms ?

	- 1000000	7042	155	49583	3 4 3 4	49144	245851	1
	0	0		0		0	1	
	0	0		0		1	0	
	0	0		1		0	0	
	0	1		0		0	0	
	_ 1	0		0		0	0	
nimodular olumn operations								
		2	1	13	-16	0		
		1	-9	4	9	17		
"Sma	all"	0	-10	0	5	-24		
norr	ns	-12	5	1	-5	1		
		1	6	5	5	1		
		5	-1	-5	-5	3		

vendredi 12 octobre 12

С

Towards the integer case

Notion of elementary step? (Order)

Cost in adequation with the actual progress ? (Degree *d* for order *d*, and truncations)

$n \times n \quad \max \log \|A_j\| \le \beta$

[Lenstra, Lenstra, Lovász 1982]

[Kaltofen 1983]

- [Schnorr 1988]
- [Schönhage 1984]

[Storjohann 1996] (relaxed)

[Schnorr 2006] (relaxed) [Nguyen, Stehlé 2006]

$$O^{\sim}(n^{3.5}\beta^2)$$

 $O^{\sim}(n^4)\beta(n+\beta)$

exponent of n exponent of β $\begin{array}{ccc}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$

[Novocin, Stehlé, V. 2010-2011] [Hanrot, Pujol, Stehlé, V. 2010-]

$n \times n \quad \max \log \|A_j\| \le \beta$

[Lenstra, Lenstra, Lovász 1982]

[Kaltofen 1983]

[Schnorr 1988]

[Schönhage 1984]

[Storjohann 1996] (relaxed) [Schnorr 2006] (relaxed)

[Nguyen, Stehlé 2006]

 $O^{\sim}(n^{3.5}\beta^2)$ $O^{\sim}(n^4)\beta(n+\beta)$

[Novocin, Stehlé, V. 2010-2011] [Hanrot, Pujol, Stehlé, V. 2010-]

LLL basis reduction

Unimodular operations

Orthogonalization

	829556	161099	11567	521155
	769480	639201	689979	53629
P	1	0	0	0
B =	0	1	0	0
	0	0	1	0
	0	0	0	1

Gram-Schmidt orthogonalization

$$B_{i}^{*}$$

$$R = \begin{bmatrix} -1.13 \ 10^{6} \ -5.52 \ 10^{5} \ -4.77 \ 10^{5} \ -4.18 \ 10^{5} \ 0 \ -3.59 \ 10^{5} \ -4.97 \ 10^{5} \ 3.15 \ 10^{5} \ 0 \ 0 \ -1.72 \ 0.82 \ 0 \ 0 \ 0 \ 1.31 \end{bmatrix}$$

Gram-Schmidt orthogonalization

 $\log \|b_i^*\|$

 b_i^*

Gram-Schmidt orthogonalization

Reduction: application of transformations that one reads on the orthogonalized vectors

$\begin{bmatrix} 44 & 93 \\ 3 & -4 \\ 1 & 2 \end{bmatrix}$

"Quotient" (translation)

Swap

$\begin{bmatrix} 11.180 & 16.994 \\ 0.0 & 40.709 \end{bmatrix}$

 $\mathbf{2}$

"Quotient" (translation)

"Quotient" (translation)

$\begin{array}{c|cccc} 11.180 & -5.3666 \\ 0.0 & 40.709 \end{array}$

$\begin{array}{ccc} 11.180 & -5.3666 \\ 0.0 & 40.709 \end{array}$

vendredi 12 octobre 12

LLL reduction

(a) "Quotient" (translation) $|r_{i,j}| \le \eta \|b_i^*\| + \theta \|b_j^*\|$ (b) If $\|b_i^*\|^2 > (r_{i,i+1}^2 + \|b_{i+1}^*\|^2) / \delta$ then swap

829556	161099	11567	521155
769480	639201	689979	53629
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

829556	161099	11567	521155
769480	639201	689979	53629
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Γ	829556	161099	11567	521155
	769480	639201	689979	53629
	1	0	0	0
	0	1	0	0
	0	0	1	0
	0	0	0	1

-158	-827	481	-532]
-344	-143	103	774
342	-199	-418	251
132	368	727	128
-459	-135	-242	-365
-575	206	446	-431

|4 -

	Iraduation					
	0	0	0	1		
I	0	0	1	0		
	0	1	0	0		
	1	0	0	0		
	769480	639201	689979	53629		
	829556	161099	11567	521155		

904.983	114.799	-335.690	371.165
0.0	-962.749	-105.204	-253.770
0.0	0.0	1038.72	-186.796
0.0	0.0	0.0	-1021.48

829556	161099	11567	521155
769480	639201	689979	53629
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

ſ	904.983	114.799	-335.690	371.165
	0.0	-962.749	-105.204	-253.770
	0.0	0.0	1038.72	-186.796
	0.0	0.0	0.0	-1021.48

Reduced bases are fairly "well" conditioned

[Chang, Stehlé, V. 2009-2011]

Reduced bases are fairly "well" conditioned

[Chang, Stehlé, V. 2009-2011]

Dimension
LLL Householder based algorithm

bits > 10000

Dimension

L2 type hybrid approach

Choice of QR algorithm depending on the arithmetic precision and the dimension

Numerical certificate/heuristic for switching

+

$n \times n \quad \max \log \|A_j\| \le \beta_j$

Numerical matrix techniques

Decoupling L2 algorithm and beyond

[Odlyzko 1984] [Schnorr 1988] [Nguyen, Stehlé 2005]

Modified Gram-Schmidt, Cholesky, Householder, etc.

Adequation of the definition of reduction with the numerical errors?

"Incompatibility" between QR algorithms and the reduction definition

[Higham 1996]

Floating point Householder algorithm

 $B \longrightarrow \tilde{R}$

[Higham 1996]

Floating point Householder algorithm

$$\begin{array}{cccc} B & \longrightarrow & \tilde{R} \\ & & & & \\ & & & & B + \Delta B = Q\tilde{R} \end{array}$$

[Higham 1996]

Floating point Householder algorithm

$$\begin{array}{cccc} B & \longrightarrow & \tilde{R} \\ & & & \\ & & & B + \Delta B = Q\tilde{R} \end{array}$$

QR perturbation theory

$$\tilde{R} = R + \Delta R \qquad \quad \frac{\|\Delta r_j\|}{\|r_j\|} \le \varkappa_j \epsilon$$

[Higham 1996]

Floating point Householder algorithm

$$\begin{array}{cccc} B & \longrightarrow & \tilde{R} \\ & & & \\ & & & B + \Delta B = Q\tilde{R} \end{array}$$

QR perturbation theory

$$\tilde{R} = R + \Delta R$$

$$\frac{\|\Delta r_j\|}{\|r_j\|} \le \varkappa_j \epsilon$$

vendredi 12 octobre 12

392554592838	836404711117
1	0
0	1

New, robust LLL reduction definition

$|r_{i,j}| \le \eta \|b_i^*\| + \theta \|b_j^*\|$

[Chang, Stehlé, V. 2009-2011]

392554592838	836404711117			0.392554592838	0.836404711117
1	0	=	σ^{12}	1	0
0	1			0	1

B reduced

B reduced

$$\sigma^l B = \operatorname{diag}(2^l, 1, \dots, 1)B$$

[Belabas 2004] [van Hoeij, Novocin 2010]

"LLL quotient": U unimodular such that $C = \sigma^l BU \quad \text{is reduced}$

[Stehlé, Novocin, V. 2010]

392554592838	836404711117]
1	0	-
0	1	
	a few step	S
15676304061	2133306629	7
32	-49	
5	23	

Lift LLL

0.392554592838	0.836404711117
1	0
0	1

Lift LLL

Tool 2 The most significant bits of B suffice

Progress: lifted by σ^l

Hint: bounds on U and robust reduction

[Lehmer 1938] [Novocin, Stehlé, V. 2010]

Lehmer lift reduction

$$\sigma^{\beta} B U$$

$$\sigma^{l} \cdot (\sigma^{l} \cdot (\dots (\sigma^{l} \cdot B \cdot U_{1}) \dots) \cdot U_{\beta/l-1}) \cdot U_{\beta/l}$$

Tool 2. l + cd digits of the basis for each lift Cost $\approx (\beta/l) \times \mathcal{P}(d)l^2$

Tool 3. Low cost transformations $\operatorname{Cost} \approx (\beta/l) \times \mathcal{Q}(d)\beta^{1+\epsilon}$

$$\iota = \sqrt{
ho}$$
 $\mathcal{P}oly(d)eta^{1.5+\epsilon}$

The talk

Symbolic linear algebra

LLL: a "testbed" for exact-numerical computation

Tool box for an iterative reduction approach

Lehmer: a lift reduction

Knuth-Schönhage: a quasi-linear time reduction

A recursive lifting tree

$\overline{B} \text{ reduced} \Rightarrow \overline{B} + \Delta \overline{B} \text{ reduced}$

 $B + \Delta B$ lifted

 $\sigma^{l/2}(B + \Delta B)U_1$ reduced $\Rightarrow \sigma^{l/2}BU_1$ reduced

"Loss of energy" (everywhere) from the precision adjustments

+ low cost unimodular matrix product

Knuth-Schönhage: a quasi-linear time reduction \tilde{L}^1 algorithm Target quality Ξ **Strengthen** quality to $\Xi' > \Xi$ First recursive call $\sigma^{l/2}BU_1$ **Strengthen** quality to $\Xi'' > \Xi'$ Second recursive call **Strengthen** quality to $\Xi''' > \Xi$

 $U_1 \odot U_2$

413216	20006	-48	14866
0	421008	-121197	-181923
0	0	283	-111
0	0	0	2

Via the Hermite normal form

Lift reduction is general Propagation + of the transformations

]	14866	-48	20006	413216	
	-181923	-121197	421008	0	
	-0.11100	0.28300	0.0	0.0	
Lifting	2	0	0	0	

. 8	-1262	76	-4984
-315	-1671	2319	1050
-1751	101	-761	986
	2150	2344	-2088

Reduced

\tilde{L}^1 basis reduction algorithm

 $\mathcal{P}oly(d)O^{\tilde{}}(eta)$

[Novocin, Stehlé, V. 2010]

Execution time vs bit-length

Knapsack d=40

Open questions

- Minimal nullspace bases: core problem? Reduction vs relation finding?
- General setting with other new approaches
 [Hanrot, Pujol, Stehlé 2010] [Schnorr 2011]
- New reduction paradigms?
- "Essentially" the matrix product ? Basis reduction algorithm with cost $O^{\sim}(MM(d,\beta))$?