The Riemann-Roch problem for divisors on two classes of surfaces

Hamish Ivey-Law

hlaw@iml.univ-mrs.fr

Institute de Mathématiques de Luminy, Université d'Aix-Marseille

School of Mathematics and Statistics, University of Sydney

Les Journées Codage et Cryptographie, Dinard 2012

Introduction

- Given a divisor D on a curve C, the Riemann-Roch problem for D is the problem of calculating the dimension and determining a basis for the space of functions L(C, nD) in terms of n.
- We will consider the analogous problem on certain classes of surfaces: Given a formal linear combination $mD_1 + nD_2$ of curves on a surface X, we calculate the dimension and determine a basis of the space of functions $H^0(X, mD_1 + nD_2)$ in terms of m and n.
- We consider the two cases: X = C × C and X = Sym²(C) where C is a hyperelliptic curve of genus g ≥ 2.

The Néron-Severi group Fundamental exact sequence Cohomology on C² Cohomology on S

Definitions: Square of the curve

- *k* a field of characteristic not 2.
- C a hyperelliptic curve of genus $g \ge 2$.
- $C^2 = C \times C$ the square of C.
- $D_{\infty} = 2(\infty)$ or $D_{\infty} = (\infty^+) + (\infty^-)$ depending on whether C has one or two points at infinity.
- $\infty \in C(\overline{k})$
- $V_{\infty} = \{\infty\} \times C$ the vertical embedding of C in C^2 .
- $H_{\infty} = \mathcal{C} \times \{\infty\}$ the horizontal embedding of \mathcal{C} in \mathcal{C}^2 .
- $F = 2(V_{\infty} + H_{\infty}).$
- ∆ and ∇ the diagonal and antidiagonal embeddings of C in C²; let D_∇ be the image of D_∞ on ∇.

Cohomology of surfaces Explicit bases of sections Applications Defined area of the Néron-Severi group Fundamental exact sequ Cohomology on C² Cohomology on S

Definitions: Symmetric square of the curve

• $S=C^2/\left<\sigma\right>$ the symmetric square of C and

$$\pi: C^2 \to S$$

is the quotient map.

•
$$\Delta_S = \pi(\Delta)$$
,

- $abla_{\mathcal{S}}=\pi(
 abla)$ and
- Θ_S = π(V_∞) = π(H_∞) are the (scheme-theoretic) images under the quotient map.

The Néron-Severi group Fundamental exact sequence Cohomology on C² Cohomology on S

Subgroups of $Div(C^2)$ and Div(S)

Let *m* and *r* be non-negative integers.

- V_{∞} , H_{∞} and ∇ are linearly independent in Div (C^2) .
- We will consider the divisors of the form $mF + r\nabla$ in $Div(C^2)$ (where $F = 2(V_{\infty} + H_{\infty})$).
- Divisors of this form don't span $Div(C^2)$.
- There is a relation

$$F\sim \Delta+
abla$$

coming from the function $x_1 - x_2$ on C^2 where $k(C^2) = k(x_1, y_1, x_2, y_2)$.

The Néron-Severi group Fundamental exact sequence Cohomology on C² Cohomology on S

Subgroups of $Div(C^2)$ and Div(S)

Let m and r be non-negative integers.

- Θ_S and ∇_S are linearly independent in Div(S).
- We will consider divisors of the form $2m\Theta_S + r\nabla_S$ in Div(S).
- Divisors of this form don't span Div(S).
- There is a relation

$$4\Theta_S \sim 2\Delta_S + 2\nabla_S$$

coming from the function $(x_1 - x_2)^2$ on S.

The Néron-Severi group Fundamental exact sequence Cohomology on C² Cohomology on S

Fundamental exact sequence

Throughout we fix $\gamma = g - 1$. Let *m* and *r* be non-negative integers. Then

$$0 \to \mathscr{O}_{C^2}(mF + (r-1)\nabla) \\ \to \mathscr{O}_{C^2}(mF + r\nabla) \\ \to \mathscr{O}_{\nabla}((2m - \gamma r)D_{\nabla}) \to 0$$

is an exact sequence (because $\mathscr{O}_{C^2}(mF + r\nabla) \otimes \mathscr{O}_{\nabla} \cong \mathscr{O}_{\nabla}((2m - \gamma r)D_{\nabla})).$ Cohomology of surfaces Explicit bases of sections Applications Applications Cohomology on C²

We thus obtain a long exact sequence of cohomology

$$\begin{split} 0 &\to H^0(C^2, mF + (r-1)\nabla) \\ &\to H^0(C^2, mF + r\nabla) \\ &\to H^0(\nabla, (2m - \gamma r)D_{\nabla}) \\ &\to H^1(C^2, mF + (r-1)\nabla) \\ &\to H^1(C^2, mF + r\nabla) \\ &\to H^1(\nabla, (2m - \gamma r)D_{\nabla}) \to \cdots \end{split}$$

The Néron-Severi group Fundamental exact sequence Cohomology on C² Cohomology on S

The easy cases

• If
$$2m - \gamma r < 0$$
, then $H^0(\nabla, (2m - \gamma r)D_{\nabla}) = 0$, so
 $H^0(C^2, mF + (r - 1)\nabla) \cong H^0(C^2, mF + r\nabla).$
• If $2m - \gamma r > 0$, then $H^1(C^2, mF + (r - 1)\nabla) = 0$, so
 $H^0(C^2, mF + r\nabla)$
 $\cong H^0(C^2, mF + (r - 1)\nabla) \oplus H^0(\nabla, (2m - \gamma r)D_{\nabla}).$

• What happens when $2m - \gamma r = 0$?

The Néron-Severi group Fundamental exact sequence Cohomology on C² Cohomology on S

The split long exact sequence

Suppose $2m - \gamma r = 0$.

- $H^0(\nabla, (2m \gamma r)D_{\nabla}) = H^0(\nabla, \mathscr{O}_{\nabla})$ has dimension 1.
- $H^1(C^2, mF + (r-1)\nabla)$ is not necessarily zero.
- We can nevertheless show that that

$$H^{0}(C^{2}, mF + r\nabla) \setminus H^{0}(C^{2}, mF + (r-1)\nabla) \neq \emptyset$$

by constructing an element explicitly.

The Néron-Severi group Fundamental exact sequence Cohomology on C² Cohomology on S

The split long exact sequence

So when $2m - \gamma r = 0$ we still get an exact sequence

$$0 \to H^0(C^2, mF + (r-1)\nabla) \to H^0(C^2, mF + r\nabla) \to H^0(\nabla, \mathscr{O}_{\nabla}) \to 0$$

because the coboundary map

$$H^0(\nabla, \mathscr{O}_{\nabla}) o H^1(\mathcal{C}^2, mF + (r-1)\nabla)$$

is zero.

The Néron-Severi group Fundamental exact sequence Cohomology on C² Cohomology on S

Structure of $H^0(C^2, mF + r\nabla)$

Theorem

Let m and r be an integers satisfying $m > \gamma$ and $r \ge 0$. We have

$$H^0(C^2, mF + r\nabla)$$

 $\cong H^0(C^2, mF) \oplus \bigoplus_{i=1}^r H^0(\nabla, (2m - \gamma i)D_{\nabla}).$

The Néron-Severi group Fundamental exact sequence **Cohomology on C²** Cohomology on S

Corollary

$$h^{0}(C^{2}, mF + r\nabla) = \begin{cases} (2m - \gamma)^{2} + 4mr - \gamma r(r+2) & \text{if } \gamma < 2m - \gamma r, \\ (2m - \gamma)^{2} + 4mr - \gamma r(r+1) - 2m + g & \text{if } 0 < 2m - \gamma r \leqslant \gamma, \\ (2m - \gamma)^{2} + 2m(r-2) + g + 1 & \text{if } 2m - \gamma r = 0, \text{ and} \\ h^{0}(C^{2}, mF + \left\lfloor \frac{2m}{\gamma} \right\rfloor \nabla) & \text{if } 2m - \gamma r < 0. \end{cases}$$

The Néron-Severi group Fundamental exact sequence Cohomology on C² Cohomology on S

Structure of $H^0(S, 2m\Theta_S + r\nabla_S)$

Theorem

Let m be an integer with $m > \gamma$. Then for all integers $r \ge 0$,

$$H^{0}(S, 2m\Theta_{S} + r\nabla_{S})$$

$$\cong H^{0}(S, 2m\Theta_{S}) \oplus \bigoplus_{i=1}^{r} H^{0}(\mathbb{P}^{1}, (2m - \gamma i)(\infty)).$$

The Néron-Severi group Fundamental exact sequence Cohomology on C² Cohomology on S

Dimension of $H^0(S, 2m\Theta_S + r\nabla_S)$

Corollary

If $2m - \gamma r \ge 0$, then

$$h^0(S, 2m\Theta_S + r\nabla_S)$$

= $\frac{(2m - \gamma)(2m - \gamma + 1)}{2} + r(2m + 1) - \gamma \frac{r(r+1)}{2}$

Otherwise

$$h^0(S, 2m\Theta_s + r\nabla) = h^0(S, 2m\Theta_s + \left\lfloor \frac{2m}{\gamma}
ight
floor \nabla).$$

 $k[D_4]$ -module structure In a neighbourhood of \triangle Generating the explicit basis

$k[D_4]$ -module structure

Goal: an explicit basis for $H^0(S, 2m\Theta_S + r\nabla_S)$.

Proposition

For any divisor D on $S = C^2 / \langle \sigma \rangle$,

$$H^0(S,D)\cong H^0(C^2,\pi^*D)^{\sigma}.$$

Since $\pi^*(2m\Theta_S + r\nabla_S) = mF + r\nabla$, we reduce to the problem of computing $H^0(C^2, mF + r\nabla)^{\sigma}$.

 $k[D_4]$ -module structure In a neighbourhood of \triangle Generating the explicit basis

$k[D_4]$ -module structure

Proposition

$$H^0(C^2, mF + r\nabla)^{\sigma} \cong W^{(-1)^r}_{m+r,r}$$

where $W_{m+r,r}^{(-1)^r}$ denotes the subspace of $H^0(C^2, (m+r)F - r\Delta)$ on which σ acts by $(-1)^r$.

This follows from the isomorphism

$$H^0(C^2, mF + r\nabla) \cong H^0(C^2, (m+r)F - r\Delta)$$

obtained from the relation $F\sim \Delta+
abla$.

 $k[D_4]$ -module structure In a neighbourhood of Δ Generating the explicit basis

In a neighbourhood of Δ

 For any section w ∈ H⁰(C², (m + r)F) we can consider the formal expansion

$$w = \sum_{i=0}^{\infty} (D^{(i)}w)(0)t^i$$

in a neighbourhood of Δ . Here $t = \frac{1}{2}(x_1 - x_2)$ is a uniformising parameter at Δ and " $D^{(i)}w = \frac{1}{i!}\frac{\partial w}{\partial t}$ " is the *i*th Hasse derivative of w with respect to t.

• A section with valuation at least r on Δ is one for which $(D^{(i)}w)(0) = 0$ for i = 0, ..., r - 1.

 $k[D_4]$ -module structure In a neighbourhood of Δ Generating the explicit basis

In a neighbourhood of Δ

• We have reduced the problem to finding a basis of $\mathcal{W}_{m+r,r}^{(-1)^r}$

But

$$W_{m+r,r}^{+1} = H^0(C^2, (m+r)F - r\Delta)^{\sigma}$$

$$W_{m+r,r}^{-1} = (x_1 - x_2)H^0(C^2, (m+r-1)F - r\Delta)^{\sigma}$$

are subspaces of $H^0(C^2, (m+r)F) \cong H^0(C, (m+r)D_{\infty})^{\otimes 2}$ of sections with valuation at least r on Δ .

 $k[D_4]$ -module structure In a neighbourhood of Δ Generating the explicit basis

An explicit description of the basis

Define

$$\varphi_i \colon W^{(-1)^r}_{m+r,0} \to k(\Delta)$$

by sending a section $w \in W_{m+r,0}^{(-1)^r} \subset H^0(\mathbb{P}^n, \mathscr{O}_{\mathbb{P}^n}(s))$ to $(D^{(i)}w)(0)$ (here s is of order m).

- The image lies in a finitely generated subring.
- φ_i is linear (being just a derivative and evaluation) and (after fixing bases) is given by a vector in k^u for some u (of order m^2).
- The basis we desire is simply

$$\operatorname{Ker}(\bigoplus_{i=0}^{r-1}\varphi_i)=\bigcap_{i=0}^{r-1}\operatorname{Ker}(\varphi_i)$$

where $\bigoplus_{i=0}^{r-1} \varphi_i$ is the matrix formed by the φ_i .

Projective embeddings Coding theory on surfaces Evaluation along ∇

Projective embeddings

• If C has genus g = 2, we obtain the well-known embedding of J_C in \mathbb{P}^{15} published by Cassels and Flynn. In the present work, this corresponds to calculating a basis of the space $H^0(S, 4\Theta_S + 4\nabla_S)$.

Projective embeddings Coding theory on surfaces Evaluation along ∇

The Fujita conjecture

- Let X be a smooth projective variety of dimension n, let K_X be a canonical divisor on X and let H be an ample divisor on X. Then K_X + λH is very ample if and only if λ ≥ n + 2.
- In 1988, Igor Reider demonstrated the Fujita conjecture in the case of surfaces.
- We can show that $K_{C^2} = \gamma F$ is a canonical divisor on C^2 and $K_S = 2\gamma \Theta_S \Delta_S$ is a canonical divisor on S.
- Hence we can now explicitly give several new embeddings of C^2 and S.

Projective embeddings Coding theory on surfaces Evaluation along ∇

Codes on C^2 and S

- Bases of H⁰(C², mF + r∇) and H⁰(S, 2mΘ_S + r∇_S) can be used to define codes.
- The analysis of these codes is yet to be done...

Projective embeddings Coding theory on surfaces Evaluation along ∇

Concluding remarks

There are several possible generalisations we might try:

- Similar results for elliptic curves are probably trivial to determine.
- Given a relatively explicit description of $End(J_C)$ in terms of the intersection theory of the correspondences, can we find dimension formulae and explicit bases for arbitrary divisors on these surfaces? At least the Frobenius divisor in positive characteristic?
- Characteristic 2 will require new techniques.
- Higher symmetric products would allow us produce the birational maps $C^{(g)} \to J_C$ to the Jacobian, but requires a much more sophisticated theory.