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Introduction

Definition
Let /,me N. Acode C C Fg’e is called ¢-quasi-cyclic of length m¢
iff

VC:(Clla"'7clﬁ|-"|C(m D1 C(m 1)(|lea"'7cm€)ec

— (le, ey Cmg|C11, cey C15| ce |C(m,1)1 ..... C(,,7,1)() ecC.
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Introduction

Definition
Let /,me N. Acode C C Fg’g is called ¢-quasi-cyclic of length m¢
iff

Ve = (Clla SERE) C1E| s |C(m D1 C(m 1)(‘lea ) Cmé) eC

.0 (le, e Cmg|C117 ceey Clg‘ .. |C(m,1)1 ..... C(n7,1)() ecC.

= C C (F¢)™ is cyclic but not necessary F .-linear.
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Bijection

Theorem
There is a one-to-one correspondence between {-quasi-cyclic codes
over Fq of length m¢ and left ideals of My(Fg)[X]/(X™ —1).

Sketch of proof. There are one-to-one correspondence between:
1. f-quasi-cyclic codes over Iy of length /m
2. submodule of (Fg[X]/(X™ — 1))
3. left ideal of M,(IFq4[X]/(X™ — 1))
4. left ideal of My(Fg)[X]/(X™ —1).
2 to 3 is given by the Morita equivalence. U
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From theory to practice |

How to built a ¢-quasi-cyclic code from a left ideal
Me(F)[X]/(X™ = 1)7
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From theory to practice |

How to built a ¢-quasi-cyclic code from a left ideal
Me(F)[X]/(X™ = 1)7

Proposition

Let T = (P1(X),..., P.(X)) be a left ideal of
M(Fg)[X]/(X™ —1). Then the Fg-linear space spanned by

{rowe (X' Pi(X)):i=0,....m—1, j=1,....r, k=1,....(}
is a {-quasi-cyclic code of length m{ over IF,, where

rowy : My(Fq)[X]/(X™—1) — FI*

P(X):EJ-:_OIPJ-XJ —  (rowg(Po), . .., rowi(Pm_1)).
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From theory to practice Il

How to built a left ideal from a ¢-quasi-cyclic code?
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Block rank

Proposition

Let C be an {-quasi-cyclic code over IF, of dimension k and length
mf. Then there exists an integer r such that 1 < r < k and for all
generator matrix G of C and for all i = 0,...,m—1, the rank of

the i+ 1,...,i+ ¢ columns of G is r, and is called the block rank.

Proposition

There exist g1, - .., & linearly independent vectors of C such that
g8, T(g),-.., T(g), .., T™ Yg1),..., T" Y(g;) span C.
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Generator polynomial

Definition (Generator polynomial)
Let
8lie+1 " B1,(i+1)¢

G,' = : : € Mg(Fq),
8riit+1 0 &r(i+1)
0

and v the smallest integer such that G, # 0. We call
g(X) = v > GiX' € Mi(Fq)[X],

the generator polynomial of C and C corresponds to the left ideal
spanned by (g(X)).
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Property

Proposition

Let C be an (-quasi-cyclic code of length m{ over Fq. Let P(X) be
a generator polynomial of C and Q(X) a generator polynomial of
its dual. Then

P(X) tQ*(X)=0 mod (X™ - 1)

where Q*(X) = X9€QQ(1/X) denotes the reciprocal polynomial
of @ and tQ the polynomial whose coefficients are the transposed
matrices of the coefficients of Q.

10/23



Outline

Generalization of cyclic codes

Q-GRS
Definition

Q-BCH

Conclusion

11/23



Definition (Generalized Reed-Solomon codes)

Let R be a finite ring, n > k € N be two integers, (X;)i=1,..n € R"
be a subtractive set, and v; € R" be n invertible elements of R.
We define

GRS(v,x, k) = {(vievi(P,x1),...,vhevi(P,xn)) : P € R[X]<k}-

We can also define 3 other GRS codes.
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From theory...

Remark (Thanks to Coste)

Let R be any finite ring, n < m be two positive integers and
M € Mpym(R). Then there exists a nonzero x € R™ such that
Mx = 0.

Proposition
Let P € R[X] of degree at most n with at least n+ 1 roots
contained in a commutative subtractive subset of A. Then P = 0.
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...to practice

Algorithm 1: Welch-Berlekamp
n—k

Input : A received vector y of R" with at most t = L > J errors.
Output: The unique codeword within distance t of y.

début

.y, <~ (V1_1y17 sy Vn_l}/n).
compute @ = Qo(X) + Qi(X)Y € (R[X])[Y]
1. Q(xj,y/)=0forall1<i<n,

2. degQo<n—t—1,
3. deg@Q <n—t—1—(k—1).
4. The leading coefficient of Q1 is 14.

P < the unique root of Q in R[X]«,
| return (viev)(P,x1),...,vhevi(P,x,)).
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A primitive root of unity

Definition
Let g be a prime power. A matrix A € My(Fgs) is called a primitive
m-th root of unity if

> AM = |,

» AL if i < m,

» det(A’ — A/) # 0, whenever i # j, that is power of A are a
subtractive set.

17/23



Quasi-BCH codes

Definition (Left quasi-BCH codes)

Let A be a primitive m-th root of unity in My(Fgs) and 6 < m. We
define the left -quasi-BCH code of length m{, with respect to A,
with designed minimum distance J, over [F; by

Q-BCH,(m, £, A) =

3
_

(cty-ovcm) € (F)™: > Algy=0fori=1,...,0—1

W.
o

Similarly, we can define the right ¢(-quasi-BCH codes.
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Q-BCH code as a cyclic RS code

Proposition
A study of the orthogonal codes gives

Q-BCH;(m, £,6,A) = rowy(RS;((A)i=1...mym—3+1))

QBCH,(m,£,6,A) = rows(RS,((A)i=1,...m. m — 8 +1)).

=—> Use the Welch-Berlekamp algorithm to decode the Q-BCH
codes.
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Conclusion |

New codes over [y

[171,11,109],
[175,11,112],
[179,11,115],
[183,11,119],
[185,11,121]g,
[187,11,123]g,
[189,11,125]g,
[191,11,127]g,
[195,11,128]g,
[199,11,131]p,
[202, 10, 134],
[204,11,133]p,
[214,11,140]g,

[172,11,110],
[176,11,113]p,
[180,11,116]p,
[184, 10, 121],
[186, 10, 123,
[188, 10, 125],
[190, 10, 127]g,
[192,11,128]p,
[196,11,129],
[200, 11, 132],
[202,11,132],
[205, 11, 134]p,

[173,11,110],
[177,11,114]g,
[181,11,117]g,
[184,11,120],
[186, 11,122],
[188,11,124],
[190,11,126]g,
[193,11,128]p,
[197,11,130]g,
[201, 10, 133]g,
[203, 10, 135],
[210,11,137]p,

[174,11,111],
[178,11,115],
[182,11,118],
[185, 10, 122],
[187, 10, 124],
[189, 10, 126],
[191, 10, 128],
[194,11,128]r,
[198, 11, 130]r,
[201, 11, 132]p,
[204, 10, 136]F,
[213,11,139]p,

Table: 49 new codes over F4 which have a larger minimum distance
than the previously known ones.
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Conclusion 1l

» 49 new best codes.

» Unique and list decoding algorithms faster on valuation rings
(e.g. Galois rings) than finite fields.

» Generalization of well known results on cyclic codes over finite
fields for cyclic codes over finite rings, with application to
quasi-cyclic codes:

» Correspondence between QC codes and some ideals.
» Generator polynomials.

» Two new classes of codes with decoding algorithm.
» Orthogonality of these classes of codes.

» Weight enumerator distribution.
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