On quasi-cyclic codes as a generalization of cyclic codes

Morgan Barbier
morgan.barbier@unicaen.fr
Joint work with:
Christophe Chabot
Guillaume Quintin
University of Caen - GREYC
Dinard, C2
October 9th 2012

Outline

Generalization of cyclic codes
Bijection between QC-codes and some ideals Generator polynomial

Q-GRS
Definition
Decoding

Q-BCH
Definition
Decoding

Conclusion

Introduction

Definition

Let $\ell, m \in \mathbb{N}$. A code $\mathcal{C} \subset \mathbb{F}_{q}^{m \ell}$ is called ℓ-quasi-cyclic of length $m \ell$ iff

$$
\begin{aligned}
& \forall c=\left(c_{11}, \ldots, c_{1 \ell}|\ldots| c_{(m-1) 1}, \ldots, c_{(m-1) \ell} \mid c_{m 1}, \ldots, c_{m \ell}\right) \in \mathcal{C} \\
& \Longrightarrow\left(c_{m 1}, \ldots, c_{m \ell}\left|c_{11}, \ldots, c_{1 \ell}\right| \ldots \mid c_{(m-1) 1}, \ldots, c_{(m-1) \ell}\right) \in \mathcal{C} .
\end{aligned}
$$

Introduction

Definition

Let $\ell, m \in \mathbb{N}$. A code $\mathcal{C} \subset \mathbb{F}_{q}^{m \ell}$ is called ℓ-quasi-cyclic of length $m \ell$ iff

$$
\begin{aligned}
& \forall c=\left(c_{11}, \ldots, c_{1 \ell}|\ldots| c_{(m-1) 1}, \ldots, c_{(m-1) \ell} \mid c_{m 1}, \ldots, c_{m \ell}\right) \in \mathcal{C} \\
& \Longrightarrow\left(c_{m 1}, \ldots, c_{m \ell}\left|c_{11}, \ldots, c_{1 \ell}\right| \ldots \mid c_{(m-1) 1}, \ldots, c_{(m-1) \ell}\right) \in \mathcal{C} .
\end{aligned}
$$

$\Longrightarrow \mathcal{C} \subset\left(\mathbb{F}_{q}\right)^{m}$ is cyclic

Introduction

Definition

Let $\ell, m \in \mathbb{N}$. A code $\mathcal{C} \subset \mathbb{F}_{q}^{m \ell}$ is called ℓ-quasi-cyclic of length $m \ell$ iff

$$
\begin{aligned}
& \forall c=\left(c_{11}, \ldots, c_{1 \ell}|\ldots| c_{(m-1) 1}, \ldots, c_{(m-1) \ell} \mid c_{m 1}, \ldots, c_{m \ell}\right) \in \mathcal{C} \\
& \Longrightarrow\left(c_{m 1}, \ldots, c_{m \ell}\left|c_{11}, \ldots, c_{1 \ell}\right| \ldots \mid c_{(m-1) 1}, \ldots, c_{(m-1) \ell}\right) \in \mathcal{C} .
\end{aligned}
$$

$\Longrightarrow \mathcal{C} \subset\left(\mathbb{F}_{q^{\ell}}\right)^{m}$ is cyclic but not necessary $\mathbb{F}_{q^{\ell}}$-linear.

Bijection

Theorem
There is a one-to-one correspondence between ℓ-quasi-cyclic codes over \mathbb{F}_{q} of length $m \ell$ and left ideals of $M_{\ell}\left(\mathbb{F}_{q}\right)[X] /\left(X^{m}-1\right)$.

Sketch of proof: There are one-to-one correspondence between:

1. ℓ-quasi-cyclic codes over \mathbb{F}_{q} of length ℓm
2. submodule of $\left(\mathbb{F}_{q}[X] /\left(X^{m}-1\right)\right)^{\ell}$
3. left ideal of $M_{\ell}\left(\mathbb{F}_{q}[X] /\left(X^{m}-1\right)\right)$
4. left ideal of $M_{\ell}\left(\mathbb{F}_{q}\right)[X] /\left(X^{m}-1\right)$.

2 to 3 is given by the Morita equivalence.

From theory to practice I

How to built a ℓ-quasi-cyclic code from a left ideal $M_{\ell}(\mathbb{F})[X] /\left(X^{m}-1\right)$?

From theory to practice I

How to built a ℓ-quasi-cyclic code from a left ideal
$M_{\ell}(\mathbb{F})[X] /\left(X^{m}-1\right)$?

Proposition

Let $\mathcal{I}=\left\langle P_{1}(X), \ldots, P_{r}(X)\right\rangle$ be a left ideal of $M_{\ell}\left(\mathbb{F}_{q}\right)[X] /\left(X^{m}-1\right)$. Then the \mathbb{F}_{q}-linear space spanned by

$$
\left\{\operatorname{row}_{k}\left(X^{i} P_{j}(X)\right): i=0, \ldots, m-1, j=1, \ldots, r, k=1, \ldots, \ell\right\}
$$

is a ℓ-quasi-cyclic code of length $m \ell$ over \mathbb{F}_{q}, where

$$
\begin{aligned}
\operatorname{row}_{k}: M_{\ell}\left(\mathbb{F}_{q}\right)[X] /\left(X^{m}-1\right) & \longrightarrow \mathbb{F}_{q}^{m \ell} \\
P(X)=\sum_{j=0}^{m-1} P_{j} X^{j} & \left.\longmapsto \operatorname{row}_{k}\left(P_{0}\right), \ldots, \operatorname{row}_{k}\left(P_{m-1}\right)\right)
\end{aligned}
$$

From theory to practice II

How to built a left ideal from a ℓ-quasi-cyclic code?

Outline

Generalization of cyclic codes
Bijection between QC-codes and some ideals
Generator polynomial

Q-GRS
Definition
Decoding

Q-BCH
Definition
Decoding

Conclusion

Block rank

Proposition

Let \mathcal{C} be an ℓ-quasi-cyclic code over \mathbb{F}_{q} of dimension k and length $m \ell$. Then there exists an integer r such that $1 \leq r \leq k$ and for all generator matrix G of \mathcal{C} and for all $i=0, \ldots, m-1$, the rank of the $i+1, \ldots, i+\ell$ columns of G is r, and is called the block rank.

Proposition

There exist g_{1}, \ldots, g_{r} linearly independent vectors of C such that $g_{1}, \ldots, g_{r}, T\left(g_{1}\right), \ldots, T\left(g_{r}\right), \ldots, T^{m-1}\left(g_{1}\right), \ldots, T^{m-1}\left(g_{r}\right)$ span C.

Generator polynomial

Definition (Generator polynomial)

Let

$$
G_{i}=\left(\begin{array}{ccc}
g_{1, i \ell+1} & \cdots & g_{1,(i+1) \ell} \\
\vdots & & \vdots \\
g_{r, i \ell+1} & \cdots & g_{r,(i+1) \ell}
\end{array}\right) \in M_{\ell}\left(\mathbb{F}_{q}\right)
$$

and ν the smallest integer such that $G_{\nu} \neq 0$. We call

$$
g(X)=\frac{1}{X^{\nu}} \sum_{i=0}^{m-1} G_{i} X^{i} \in M_{\ell}\left(\mathbb{F}_{q}\right)[X]
$$

the generator polynomial of \mathcal{C} and \mathcal{C} corresponds to the left ideal spanned by $\langle g(X)\rangle$.

Property

Proposition

Let \mathcal{C} be an ℓ-quasi-cyclic code of length $m \ell$ over \mathbb{F}_{q}. Let $P(X)$ be a generator polynomial of \mathcal{C} and $Q(X)$ a generator polynomial of its dual. Then

$$
P(X)^{t} Q^{*}(X) \equiv 0 \quad \bmod \left(X^{m}-1\right)
$$

where $Q^{*}(X)=X^{\operatorname{deg} Q} Q(1 / X)$ denotes the reciprocal polynomial of Q and ${ }^{t} Q$ the polynomial whose coefficients are the transposed matrices of the coefficients of Q.

Outline

Generalization of cyclic codes
Bijection between QC-codes and some ideals Generator polynomial

Q-GRS
Definition
Decoding

Q-BCH
Definition
Decoding

Conclusion

Definition (Generalized Reed-Solomon codes)

Let \mathcal{R} be a finite ring, $n \geq k \in \mathbb{N}$ be two integers, $\left(x_{i}\right)_{i=1, \ldots, n} \in \mathcal{R}^{n}$ be a subtractive set, and $v_{i} \in \mathcal{R}^{n}$ be n invertible elements of \mathcal{R}.
We define
$\operatorname{GRS}_{/ /}(v, x, k)=\left\{\left(v_{1} \mathrm{ev}_{l}\left(P, x_{1}\right), \ldots, v_{n} \operatorname{ev}_{l}\left(P, x_{n}\right)\right): P \in \mathcal{R}[X]_{<k}\right\}$.

We can also define 3 other GRS codes.

Outline

Generalization of cyclic codes
Bijection between QC-codes and some ideals Generator polynomial

Q-GRS
Definition
Decoding
Q-BCH
Definition
Decoding

Conclusion

From theory...

Remark (Thanks to Coste)
Let \mathcal{R} be any finite ring, $n<m$ be two positive integers and $M \in M_{n \times m}(\mathcal{R})$. Then there exists a nonzero $x \in \mathcal{R}^{m}$ such that $M x=0$.

Proposition

Let $P \in \mathcal{R}[X]$ of degree at most n with at least $n+1$ roots contained in a commutative subtractive subset of A. Then $P=0$.

to practice

Algorithm 1: Welch-Berlekamp

Input : A received vector y of \mathcal{R}^{n} with at most $t=\left\lfloor\frac{n-k}{2}\right\rfloor$ errors.
Output: The unique codeword within distance t of y.
début

$$
\begin{aligned}
& y^{\prime} \leftarrow\left(v_{1}^{-1} y_{1}, \ldots, v_{n}^{-1} y_{n}\right), \\
& \text { compute } Q=Q_{0}(X)+Q_{1}(X) Y \in(\mathcal{R}[X])[Y] \\
& \text { 1. } Q\left(x_{i}, y_{i}^{\prime}\right)=0 \text { for all } 1 \leq i \leq n \text {, } \\
& \text { 2. } \operatorname{deg} Q_{0} \leq n-t-1, \\
& \text { 3. } \operatorname{deg} Q_{1} \leq n-t-1-(k-1) \text {. } \\
& \text { 4. The leading coefficient of } Q_{1} \text { is } 1_{A} \text {. } \\
& P \leftarrow \text { the unique root of } Q \text { in } \mathcal{R}[X]_{<k} \text {, } \\
& \text { return }\left(v_{1} \operatorname{ev}_{l}\left(P, x_{1}\right), \ldots, v_{n} \operatorname{ev}\left(P, x_{n}\right)\right) \text {. }
\end{aligned}
$$

Outline

Generalization of cyclic codes
Bijection between QC-codes and some ideals Generator polynomial

Q-GRS
Definition
Decoding

Q-BCH
Definition
Decoding

Conclusion

A primitive root of unity

Definition

Let q be a prime power. A matrix $A \in M_{\ell}\left(\mathbb{F}_{q^{s}}\right)$ is called a primitive m-th root of unity if

- $A^{m}=I_{\ell}$,
- $A^{i} \neq I_{\ell}$ if $i<m$,
- $\operatorname{det}\left(A^{i}-A^{j}\right) \neq 0$, whenever $i \neq j$, that is power of A are a subtractive set.

Quasi-BCH codes

Definition (Left quasi-BCH codes)

Let A be a primitive m-th root of unity in $M_{\ell}\left(\mathbb{F}_{q^{s}}\right)$ and $\delta \leq m$. We define the left ℓ-quasi- $B C H$ code of length $m \ell$, with respect to A, with designed minimum distance δ, over \mathbb{F}_{q} by

$$
\begin{aligned}
& \mathrm{Q}-\mathrm{BCH}_{l}(m, \ell, \delta, A)= \\
& \left\{\left(c_{1}, \ldots, c_{m}\right) \in\left(\mathbb{F}_{q}^{\ell}\right)^{m}: \sum_{j=0}^{m-1} A^{i j} c_{j+1}=0 \text { for } i=1, \ldots, \delta-1\right\}
\end{aligned}
$$

Similarly, we can define the right ℓ-quasi- $B C H$ codes.

Outline

Generalization of cyclic codes
Bijection between QC-codes and some ideals Generator polynomial

Q-GRS
Definition
Decoding

Q-BCH
Definition
Decoding
Conclusion

Q-BCH code as a cyclic RS code

Proposition

A study of the orthogonal codes gives

$$
\begin{aligned}
\mathrm{Q}-\mathrm{BCH}_{l}(m, \ell, \delta, A) & =\operatorname{row}_{1}\left(\mathrm{RS}_{l}\left(\left(A^{i}\right)_{i=1, \ldots, m}, m-\delta+1\right)\right) \\
\mathrm{Q}-\mathrm{BCH}_{r}(m, \ell, \delta, A) & =\operatorname{row}_{1}\left(\mathrm{RS}_{r}\left(\left(A^{i}\right)_{i=1, \ldots, m}, m-\delta+1\right)\right)
\end{aligned}
$$

\Longrightarrow Use the Welch-Berlekamp algorithm to decode the Q-BCH codes.

Conclusion I

New codes over \mathbb{F}_{4}

$[171,11,109]_{\mathbb{F}_{4}}$	$[172,11,110]_{\mathbb{F}_{4}}$	$[173,11,110]_{\mathbb{F}_{4}}$	$[174,11,111]_{\mathbb{F}_{4}}$
$[175,11,112]_{\mathbb{F}_{4}}$	$[176,11,113]_{\mathbb{F}_{4}}$	$[177,11,114]_{\mathbb{F}_{4}}$	$[178,11,115]_{\mathbb{F}_{4}}$
$[179,11,115]_{\mathbb{F}_{4}}$	$[180,11,116]_{\mathbb{F}_{4}}$	$[181,11,117]_{\mathbb{F}_{4}}$	$[182,11,118]_{\mathbb{F}_{4}}$
$[183,11,119]_{\mathbb{F}_{4}}$	$[184,10,121]_{\mathbb{F}_{4}}$	$[184,11,120]_{\mathbb{F}_{4}}$	$[185,10,122]_{\mathbb{F}_{4}}$
$[185,11,121]_{\mathbb{F}_{4}}$	$[186,10,123]_{\mathbb{F}_{4}}$	$[186,11,122]_{\mathbb{F}_{4}}$	$[187,10,124]_{\mathbb{F}_{4}}$
$[187,11,123]_{\mathbb{F}_{4}}$	$[188,10,125]_{\mathbb{F}_{4}}$	$[188,11,124]_{\mathbb{F}_{4}}$	$[189,10,126]_{\mathbb{F}_{4}}$
$[189,11,125]_{\mathbb{F}_{4}}$	$[190,10,127]_{\mathbb{F}_{4}}$	$[190,11,126]_{\mathbb{F}_{4}}$	$[191,10,128]_{\mathbb{F}_{4}}$
$[191,11,127]_{\mathbb{F}_{4}}$	$[192,11,128]_{\mathbb{F}_{4}}$	$[193,11,128]_{\mathbb{F}_{4}}$	$[194,11,128]_{\mathbb{F}_{4}}$
$[195,11,128]_{\mathbb{F}_{4}}$	$[196,11,129]_{\mathbb{F}_{4}}$	$[197,11,130]_{\mathbb{F}_{4}}$	$[198,11,130]_{\mathbb{F}_{4}}$
$[199,11,131]_{\mathbb{F}_{4}}$	$[200,11,132]_{\mathbb{F}_{4}}$	$[201,10,133]_{\mathbb{F}_{4}}$	$[201,11,132]_{\mathbb{F}_{4}}$
$[202,10,134]_{\mathbb{F}_{4}}$	$[202,11,132]_{\mathbb{F}_{4}}$	$[203,10,135]_{\mathbb{F}_{4}}$	$[204,10,136]_{\mathbb{F}_{4}}$
$[204,11,133]_{\mathbb{F}_{4}}$	$[205,11,134]_{\mathbb{F}_{4}}$	$[210,11,137]_{\mathbb{F}_{4}}$	$[213,11,139]_{\mathbb{F}_{4}}$
$\left[214,11,140 \mathbb{F}_{4}\right.$			

Table: 49 new codes over \mathbb{F}_{4} which have a larger minimum distance than the previously known ones.

Conclusion II

- 49 new best codes.
- Unique and list decoding algorithms faster on valuation rings (e.g. Galois rings) than finite fields.
- Generalization of well known results on cyclic codes over finite fields for cyclic codes over finite rings, with application to quasi-cyclic codes:
- Correspondence between QC codes and some ideals.
- Generator polynomials.
- Two new classes of codes with decoding algorithm.
- Orthogonality of these classes of codes.
- Weight enumerator distribution.

On quasi-cyclic codes as a generalization of cyclic codes

Morgan Barbier
morgan.barbier@unicaen.fr
Joint work with:
Christophe Chabot
Guillaume Quintin
University of Caen - GREYC
Dinard, C2
October 9th 2012

