On quasi-cyclic codes as a generalization of cyclic codes

Morgan Barbier morgan.barbier@unicaen.fr

> Joint work with: Christophe Chabot Guillaume Quintin

University of Caen - GREYC

Dinard, C2 October 9th 2012

Generalization of cyclic codes

Bijection between QC-codes and some ideals Generator polynomial

Q-GRS

Definition Decoding

Q-BCH Definition Decoding

Introduction

Definition

Let $\ell, m \in \mathbb{N}$. A code $\mathcal{C} \subset \mathbb{F}_q^{m\ell}$ is called ℓ -quasi-cyclic of length $m\ell$ iff

$$\forall \boldsymbol{c} = (\boldsymbol{c}_{11}, \ldots, \boldsymbol{c}_{1\ell} | \ldots | \boldsymbol{c}_{(m-1)1}, \ldots, \boldsymbol{c}_{(m-1)\ell} | \boldsymbol{c}_{m1}, \ldots, \boldsymbol{c}_{m\ell}) \in \mathcal{C}$$

$$\Longrightarrow (\mathbf{c}_{m1},\ldots,\mathbf{c}_{m\ell}|\mathbf{c}_{11},\ldots,\mathbf{c}_{1\ell}|\ldots|\mathbf{c}_{(m-1)1},\ldots,\mathbf{c}_{(m-1)\ell}) \in \mathcal{C}.$$

Introduction

Definition

Let $\ell, m \in \mathbb{N}$. A code $\mathcal{C} \subset \mathbb{F}_q^{m\ell}$ is called ℓ -quasi-cyclic of length $m\ell$ iff

$$\forall \boldsymbol{c} = (\boldsymbol{c}_{11}, \ldots, \boldsymbol{c}_{1\ell} | \ldots | \boldsymbol{c}_{(m-1)1}, \ldots, \boldsymbol{c}_{(m-1)\ell} | \boldsymbol{c}_{m1}, \ldots, \boldsymbol{c}_{m\ell}) \in \mathcal{C}$$

$$\Longrightarrow (\mathbf{c}_{m1},\ldots,\mathbf{c}_{m\ell}|\mathbf{c}_{11},\ldots,\mathbf{c}_{1\ell}|\ldots|\mathbf{c}_{(m-1)1},\ldots,\mathbf{c}_{(m-1)\ell}) \in \mathcal{C}.$$

$$\Longrightarrow \mathcal{C} \subset (\mathbb{F}_{q^\ell})^m$$
 is cyclic

Introduction

Definition

Let $\ell, m \in \mathbb{N}$. A code $\mathcal{C} \subset \mathbb{F}_q^{m\ell}$ is called ℓ -quasi-cyclic of length $m\ell$ iff

$$\forall \boldsymbol{c} = (\boldsymbol{c}_{11}, \ldots, \boldsymbol{c}_{1\ell} | \ldots | \boldsymbol{c}_{(m-1)1}, \ldots, \boldsymbol{c}_{(m-1)\ell} | \boldsymbol{c}_{m1}, \ldots, \boldsymbol{c}_{m\ell}) \in \mathcal{C}$$

$$\Longrightarrow (\mathbf{c}_{m1},\ldots,\mathbf{c}_{m\ell}|\mathbf{c}_{11},\ldots,\mathbf{c}_{1\ell}|\ldots|\mathbf{c}_{(m-1)1},\ldots,\mathbf{c}_{(m-1)\ell}) \in \mathcal{C}.$$

 $\Longrightarrow \mathcal{C} \subset (\mathbb{F}_{q^\ell})^m$ is cyclic but not necessary \mathbb{F}_{q^ℓ} -linear.

Bijection

Theorem

There is a one-to-one correspondence between ℓ -quasi-cyclic codes over \mathbb{F}_q of length $m\ell$ and left ideals of $M_{\ell}(\mathbb{F}_q)[X]/(X^m - 1)$.

Sketch of proof: There are one-to-one correspondence between:

- 1. ℓ -quasi-cyclic codes over \mathbb{F}_q of length ℓm
- 2. submodule of $(\mathbb{F}_q[X]/(X^m-1))^\ell$
- 3. left ideal of $M_\ell(\mathbb{F}_q[X]/(X^m-1))$
- 4. left ideal of $M_{\ell}(\mathbb{F}_q)[X]/(X^m-1)$.

2 to 3 is given by the Morita equivalence.

From theory to practice I

How to built a ℓ -quasi-cyclic code from a left ideal $M_{\ell}(\mathbb{F})[X]/(X^m-1)$?

From theory to practice I

How to built a ℓ -quasi-cyclic code from a left ideal $M_{\ell}(\mathbb{F})[X]/(X^m-1)$?

Proposition

Let
$$\mathcal{I} = \langle P_1(X), \dots, P_r(X) \rangle$$
 be a left ideal of $M_{\ell}(\mathbb{F}_q)[X]/(X^m - 1)$. Then the \mathbb{F}_q -linear space spanned by

$$\{\operatorname{row}_k(X^i P_j(X)) : i = 0, \dots, m-1, j = 1, \dots, r, k = 1, \dots, \ell\}$$

is a ℓ -quasi-cyclic code of length $m\ell$ over \mathbb{F}_q , where

$$\operatorname{row}_{k}: M_{\ell}(\mathbb{F}_{q})[X]/(X^{m}-1) \longrightarrow \mathbb{F}_{q}^{m\ell}$$
$$P(X) = \sum_{j=0}^{m-1} P_{j}X^{j} \longmapsto (\operatorname{row}_{k}(P_{0}), \dots, \operatorname{row}_{k}(P_{m-1})).$$

From theory to practice II

How to built a left ideal from a ℓ -quasi-cyclic code?

Generalization of cyclic codes Bijection between QC-codes and some ideals Generator polynomial

Q-GRS

Definition Decoding

Q-BCH Definitio Decoding

Block rank

Proposition

Let C be an ℓ -quasi-cyclic code over \mathbb{F}_q of dimension k and length $m\ell$. Then there exists an integer r such that $1 \leq r \leq k$ and for all generator matrix G of C and for all i = 0, ..., m - 1, the rank of the $i + 1, ..., i + \ell$ columns of G is r, and is called the block rank.

Proposition

There exist g_1, \ldots, g_r linearly independent vectors of C such that $g_1, \ldots, g_r, T(g_1), \ldots, T(g_r), \ldots, T^{m-1}(g_1), \ldots, T^{m-1}(g_r)$ span C.

Generator polynomial

Definition (Generator polynomial) Let

$$G_i = \begin{pmatrix} g_{1,i\ell+1} & \cdots & g_{1,(i+1)\ell} \\ \vdots & & \vdots \\ g_{r,i\ell+1} & \cdots & g_{r,(i+1)\ell} \\ & 0 \end{pmatrix} \in M_\ell(\mathbb{F}_q),$$

and ν the smallest integer such that $\textit{G}_{\nu}\neq 0.$ We call

$$g(X)=rac{1}{X^{
u}}\sum_{i=0}^{m-1}G_iX^i\in M_\ell(\mathbb{F}_q)[X],$$

the generator polynomial of C and C corresponds to the left ideal spanned by $\langle g(X) \rangle$.

Property

Proposition

Let C be an ℓ -quasi-cyclic code of length $m\ell$ over \mathbb{F}_q . Let P(X) be a generator polynomial of C and Q(X) a generator polynomial of its dual. Then

$$P(X) \ ^tQ^*(X) \equiv 0 \mod (X^m - 1)$$

where $Q^*(X) = X^{\deg Q}Q(1/X)$ denotes the reciprocal polynomial of Q and tQ the polynomial whose coefficients are the transposed matrices of the coefficients of Q.

Generalization of cyclic codes

Bijection between QC-codes and some ideals Generator polynomial

Q-GRS

Definition

Decoding

Q-BCH Definition Decoding

Definition (Generalized Reed-Solomon codes)

Let \mathcal{R} be a finite ring, $n \ge k \in \mathbb{N}$ be two integers, $(x_i)_{i=1,...,n} \in \mathcal{R}^n$ be a subtractive set, and $v_i \in \mathcal{R}^n$ be n invertible elements of \mathcal{R} . We define

$$GRS_{II}(v, x, k) = \{(v_1 ev_I(P, x_1), \dots, v_n ev_I(P, x_n)) : P \in \mathcal{R}[X]_{< k}\}.$$

We can also define 3 other GRS codes.

Generalization of cyclic codes

Bijection between QC-codes and some ideals Generator polynomial

Q-GRS

Definition Decoding

Q-BCH Definition Decoding

From theory...

Remark (Thanks to Coste)

Let \mathcal{R} be any finite ring, n < m be two positive integers and $M \in M_{n \times m}(\mathcal{R})$. Then there exists a nonzero $x \in \mathcal{R}^m$ such that Mx = 0.

Proposition

Let $P \in \mathcal{R}[X]$ of degree at most n with at least n + 1 roots contained in a commutative subtractive subset of A. Then P = 0.

...to practice

Algorithm 1: Welch-Berlekamp

Input : A received vector y of \mathcal{R}^n with at most $t = \lfloor \frac{n-k}{2} \rfloor$ errors. **Output**: The unique codeword within distance t of y.

début

$$\begin{array}{l} y' \leftarrow (v_1^{-1}y_1, \dots, v_n^{-1}y_n), \\ \text{compute } Q = Q_0(X) + Q_1(X)Y \in (\mathcal{R}[X])[Y \\ 1. \ Q(x_i, y_i') = 0 \text{ for all } 1 \le i \le n, \\ 2. \ \deg Q_0 \le n - t - 1, \\ 3. \ \deg Q_1 \le n - t - 1 - (k - 1). \\ 4. \ \text{The leading coefficient of } Q_1 \text{ is } 1_A. \\ P \leftarrow \text{the unique root of } Q \text{ in } \mathcal{R}[X]_{< k}, \\ \text{return } (v_1 \operatorname{ev}_l(P, x_1), \dots, v_n \operatorname{ev}_l(P, x_n)). \end{array}$$

Generalization of cyclic codes

Bijection between QC-codes and some ideals Generator polynomial

Q-GRS

Definition Decoding

Q-BCH Definition Decoding

A primitive root of unity

Definition

Let q be a prime power. A matrix $A \in M_{\ell}(\mathbb{F}_{q^s})$ is called a *primitive m*-th root of unity if

- $A^m = I_\ell$,
- $A^i \neq I_\ell$ if i < m,
- det(Aⁱ − A^j) ≠ 0, whenever i ≠ j, that is power of A are a subtractive set.

Quasi-BCH codes

Definition (Left quasi-BCH codes)

Let A be a primitive *m*-th root of unity in $M_{\ell}(\mathbb{F}_{q^s})$ and $\delta \leq m$. We define the *left* ℓ -quasi-BCH code of length $m\ell$, with respect to A, with designed minimum distance δ , over \mathbb{F}_q by

$$\mathsf{Q}\text{-}\mathsf{B}\mathsf{C}\mathsf{H}_{I}(m,\ell,\delta,A) = \left\{ (c_{1},\ldots,c_{m}) \in (\mathbb{F}_{q}^{\ell})^{m} : \sum_{j=0}^{m-1} A^{ij}c_{j+1} = 0 \text{ for } i = 1,\ldots,\delta-1 \right\}.$$

Similarly, we can define the *right* ℓ -quasi-BCH codes.

Generalization of cyclic codes

Bijection between QC-codes and some ideals Generator polynomial

Q-GRS

Definition Decoding

Q-BCH Definition Decoding

Q-BCH code as a cyclic RS code

Proposition A study of the orthogonal codes gives

 \Longrightarrow Use the Welch-Berlekamp algorithm to decode the Q-BCH codes.

Conclusion I

New codes over \mathbb{F}_4			
$[171, 11, 109]_{\mathbb{F}_4}$	$[172, 11, 110]_{\mathbb{F}_4}$	$[173, 11, 110]_{\mathbb{F}_4}$	$[174, 11, 111]_{\mathbb{F}_4}$
$[175, 11, 112]_{\mathbb{F}_4}$	$[176, 11, 113]_{\mathbb{F}_4}$	$[177, 11, 114]_{\mathbb{F}_4}$	$[178, 11, 115]_{\mathbb{F}_4}$
$[179, 11, 115]_{\mathbb{F}_4}$	$[180, 11, 116]_{\mathbb{F}_4}$	$[181, 11, 117]_{\mathbb{F}_4}$	$[182, 11, 118]_{\mathbb{F}_4}$
$[183, 11, 119]_{\mathbb{F}_4}$	$[184, 10, 121]_{\mathbb{F}_4}$	$[184, 11, 120]_{\mathbb{F}_4}$	$[185, 10, 122]_{\mathbb{F}_4}$
$[185, 11, 121]_{\mathbb{F}_4}$	$[186, 10, 123]_{\mathbb{F}_4}$	$[186, 11, 122]_{\mathbb{F}_4}$	$[187, 10, 124]_{\mathbb{F}_4}$
$[187, 11, 123]_{\mathbb{F}_4}$	$[188, 10, 125]_{\mathbb{F}_4}$	$[188, 11, 124]_{\mathbb{F}_4}$	$[189, 10, 126]_{\mathbb{F}_4}$
$[189, 11, 125]_{\mathbb{F}_4}$	$[190, 10, 127]_{\mathbb{F}_4}$	$[190, 11, 126]_{\mathbb{F}_4}$	$[191, 10, 128]_{\mathbb{F}_4}$
$[191, 11, 127]_{\mathbb{F}_4}$	$[192, 11, 128]_{\mathbb{F}_4}$	$[193, 11, 128]_{\mathbb{F}_4}$	$[194, 11, 128]_{\mathbb{F}_4}$
$[195, 11, 128]_{\mathbb{F}_4}$	$[196, 11, 129]_{\mathbb{F}_4}$	$[197, 11, 130]_{\mathbb{F}_4}$	$[198, 11, 130]_{\mathbb{F}_4}$
$[199, 11, 131]_{\mathbb{F}_4}$	$[200, 11, 132]_{\mathbb{F}_4}$	$[201, 10, 133]_{\mathbb{F}_4}$	$[201, 11, 132]_{\mathbb{F}_4}$
$[202, 10, 134]_{\mathbb{F}_4}$	$[202, 11, 132]_{\mathbb{F}_4}$	$[203, 10, 135]_{\mathbb{F}_4}$	$[204, 10, 136]_{\mathbb{F}_4}$
$[204, 11, 133]_{\mathbb{F}_4}$	$[205, 11, 134]_{\mathbb{F}_4}$	$[210, 11, 137]_{\mathbb{F}_4}$	$[213, 11, 139]_{\mathbb{F}_4}$
$[214, 11, 140]_{\mathbb{F}_4}$			

Table: 49 new codes over \mathbb{F}_4 which have a larger minimum distance than the previously known ones.

Conclusion II

49 new best codes.

 Unique and list decoding algorithms faster on valuation rings (e.g. Galois rings) than finite fields.

- Generalization of well known results on cyclic codes over finite fields for cyclic codes over finite rings, with application to quasi-cyclic codes:
 - Correspondence between QC codes and some ideals.
 - Generator polynomials.
 - Two new classes of codes with decoding algorithm.
 - Orthogonality of these classes of codes.
 - Weight enumerator distribution.

On quasi-cyclic codes as a generalization of cyclic codes

Morgan Barbier morgan.barbier@unicaen.fr

> Joint work with: Christophe Chabot Guillaume Quintin

University of Caen - GREYC

Dinard, C2 October 9th 2012

