
Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Extension of Barack Halevi model and applications

Sylvain Ruhault (ENS, Oppida)

11/10/2012

Join work with Yevgeniy Dodis (NYU), David Pointcheval (ENS) and Damien
Vergnaud (ENS)

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Agenda

1 Need for randomness in concrete situations

2 Barak-Halevi model

3 Model extension

4 Applications

5 Conclusion

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Need for randomness in concrete situations

Needs
(Session, root, servers) keys generation
Encryption : RSA paddings, El Gamal, CBC
mode
Signature : DSA
Nonces in security protocols e.g. TLS, IPSEC

Tools for randomness generation
Network devices
Isolated servers
Dedicated crytographic software or hardware
Java applets, web browsers

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Need for randomness in concrete situations

Implementation example: TLS protocol
TLS protocol needs randomness:

Exchange, session, signature keys generation
Nonces, paddings, initialisation vectors
generation

Typical server implementation uses Apache
mod_ssl module on a Linux server
Typical client implementation uses browser or
Java applet

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Need for randomness in concrete situations

Recent vulnerabilities
Implementation vulnerabilities

"Ron was wrong, Whit is right"
Openssl Debian implementation

Attacks using bad PRNG
DSS private signature key recovery: when a LCG
is used, 3 signatures can help signature forgery
RSA OAEP with e=3 is not one way when used
with poor randomness

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Definitions

Pseudorandom generator
A function G : {0, 1}d → {0, 1}m is a
pseudorandom generator if

m� d (G expands)
Output of a truly random seed is
indistinguishable from random

∃ε,∀ PPT A,∀n,

|Pr [A(G (Ud(n))) = 1]− Pr [A(Um(n)) = 1]| ≤ ε(n)

00100111010 G−→ 0010111010110100101101001001011010011010110

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Definitions

Generator without input
Seed S0

Successive outputs of G with a
deterministic function
Examples: LCG, DSA generator

Generator with input
Additionnal data used to refresh the
internal state of the generator
Examples: DSA, Linux, Openssl,
Java generators

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Security models

Associated security models
Attacker can interact with generator G
with 3 interfaces:

Input control
Internal state compromise
Output request

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Security models

Resilience
Potentially total control of the
input data
No access to internal state
Output request

Backward and forward security
Internal state compromise
Forward security: past outputs
requests
Backward security: future outputs
requests

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Security models

Associated security models
Generator is

Resilient, or
Backward secure, or
Forward secure,

if A can’t distinguish generator
output from random output.

Relations between security properties
No implication between resilience, backward security and forward security

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Security models

Barak-Halevi model
Attacker can interact with generator G
with 4 interfaces:

Input control:
no entropy input
high entropy input

Internal state compromise
Output request

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Security models

Barak-Halevi model
Generator is robust if, once G is
refreshed with a high entropy input, A
can’t distinguish :

state from random on state
compromise
generator output from random
output on output request

Relations between security properties
Robustness implies resilience, backward security and forward security

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Entropy definitions

High entropy input ?
Shannon Entropy: H1(X) =

∑
x∈X

P[X = x]× log2(
1

Pr [X=x])

X : {0, 1}128 → {0, 1}128

Pr [X = 0] = 2−15

Pr [X = y , y 6= 0] = 1−2−15

2128−1

Then H1(X) = 127, 997

But . . .
A key K generated with this distribution. Then adversary A has
probability 2−15 of guessing it by deriving it from x = 0
If 215 keys are generated with this distribution, then probability that
one key is derived from x = 0 is 1− e−1 ≈ 0.63

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Entropy definitions

High entropy = High Min-Entropy

Min-Entropy: H∞(X) = min
x∈X

{
log2(

1
Pr [X=x])

}
Computational Min-Entropy: Hc(X) ≥ k ,

∃Y ,H∞(Y) = k
∃ε,∀A, ∀n,Pr [A(X) = 1]− Pr [A(Y) = 1]| ≤ ε(n)

H∞(X) = 15
with distribution X

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Analysis

Barak-Halevi model analysis
Attacker should be able to interact
with any Min-Entropy input.
Min-entropy should be guaranteed
after compromise

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Model extension

Entropy preservation
A pseudorandom generator G ε-preserves {1,∞, c}-entropy if:

Entropy is preserved on state refresh
H∗(S ′|I) ≥ H∗(S)− ε
H∗(S ′|S) ≥ H∗(I)− ε

Entropy is preserved on output request
H∗(O) ≥ H∗(S)− ε
H∗(S ′|O) ≥ H∗(S)− ε

Refinement
Definition applicable for all entropy definitions, however not relevant
for Shannon Entropy
If all properties are requested, H∗ = Hc

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Model extension

Entropy preservation model
Attacker can interact with generator G
with 3 interfaces:

Input control: any entropy input
Internal state compromise
Output request

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Model extension

Entropy preservation model
Generator preserves entropy if A can’t
distinguish generator output from output
with given entropy:

on state compromise
on output request

Theorem
Hc 0-preservation =⇒ robustness

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Application to DSA Generator analysis

Description
Optional input
Output generation:

O = H((S + I) mod 2160)
S ′ = (S + O + 1) mod 2160

Theorem
If H is a random oracle =⇒ H∞ 0-preservation
If H is collision resistant =⇒ Hc 1-preservation, if Hc(I) > 8

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Application to Linux PRNG analysis

Theorem
If H is a random oracle =⇒ H∞ 0-preservation
If H is collision resistant =⇒ Hc 1-preservation, if Hc(I) > O(1)

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Conclusion

New security model for PRNG analysis and applications
Extension of Barak-Halevi model
Use of Min-Entropy
Applications: security analysis of DSA and Linux Generators

Future work
Security analysis of Openssl and Java Generators and others (virtual
or embedded system)
Supplementary security property: entropy accumulation

Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Thanks for your attention

	Need for randomness in concrete situations
	Barak-Halevi model
	Model extension
	Applications
	Conclusion

