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Need for randomness in concrete situations

Needs
(Session, root, servers) keys generation
Encryption : RSA paddings, El Gamal, CBC
mode
Signature : DSA
Nonces in security protocols e.g. TLS, IPSEC

Tools for randomness generation
Network devices
Isolated servers
Dedicated crytographic software or hardware
Java applets, web browsers
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Need for randomness in concrete situations

Implementation example: TLS protocol
TLS protocol needs randomness:

Exchange, session, signature keys generation
Nonces, paddings, initialisation vectors
generation

Typical server implementation uses Apache
mod_ssl module on a Linux server
Typical client implementation uses browser or
Java applet
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Need for randomness in concrete situations

Recent vulnerabilities
Implementation vulnerabilities

"Ron was wrong, Whit is right"
Openssl Debian implementation

Attacks using bad PRNG
DSS private signature key recovery: when a LCG
is used, 3 signatures can help signature forgery
RSA OAEP with e=3 is not one way when used
with poor randomness
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Definitions

Pseudorandom generator
A function G : {0, 1}d → {0, 1}m is a
pseudorandom generator if

m� d (G expands)
Output of a truly random seed is
indistinguishable from random

∃ε,∀ PPT A,∀n,

|Pr [A(G (Ud(n))) = 1]− Pr [A(Um(n)) = 1]| ≤ ε(n)

00100111010 G−→ 0010111010110100101101001001011010011010110
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Definitions

Generator without input
Seed S0

Successive outputs of G with a
deterministic function
Examples: LCG, DSA generator

Generator with input
Additionnal data used to refresh the
internal state of the generator
Examples: DSA, Linux, Openssl,
Java generators



Need for randomness in concrete situations Barak-Halevi model Model extension Applications Conclusion

Security models

Associated security models
Attacker can interact with generator G
with 3 interfaces:

Input control
Internal state compromise
Output request
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Security models

Resilience
Potentially total control of the
input data
No access to internal state
Output request

Backward and forward security
Internal state compromise
Forward security: past outputs
requests
Backward security: future outputs
requests
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Security models

Associated security models
Generator is

Resilient, or
Backward secure, or
Forward secure,

if A can’t distinguish generator
output from random output.

Relations between security properties
No implication between resilience, backward security and forward security
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Security models

Barak-Halevi model
Attacker can interact with generator G
with 4 interfaces:

Input control:
no entropy input
high entropy input

Internal state compromise
Output request
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Security models

Barak-Halevi model
Generator is robust if, once G is
refreshed with a high entropy input, A
can’t distinguish :

state from random on state
compromise
generator output from random
output on output request

Relations between security properties
Robustness implies resilience, backward security and forward security
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Entropy definitions

High entropy input ?
Shannon Entropy: H1(X ) =

∑
x∈X

P[X = x ]× log2(
1

Pr [X=x] )

X : {0, 1}128 → {0, 1}128

Pr [X = 0] = 2−15

Pr [X = y , y 6= 0] = 1−2−15

2128−1

Then H1(X ) = 127, 997

But . . .
A key K generated with this distribution. Then adversary A has
probability 2−15 of guessing it by deriving it from x = 0
If 215 keys are generated with this distribution, then probability that
one key is derived from x = 0 is 1− e−1 ≈ 0.63
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Entropy definitions

High entropy = High Min-Entropy

Min-Entropy: H∞(X ) = min
x∈X

{
log2(

1
Pr [X=x] )

}
Computational Min-Entropy: Hc(X ) ≥ k ,

∃Y ,H∞(Y ) = k
∃ε,∀A, ∀n,Pr [A(X ) = 1]− Pr [A(Y ) = 1]| ≤ ε(n)

H∞(X ) = 15
with distribution X
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Analysis

Barak-Halevi model analysis
Attacker should be able to interact
with any Min-Entropy input.
Min-entropy should be guaranteed
after compromise
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Model extension

Entropy preservation
A pseudorandom generator G ε-preserves {1,∞, c}-entropy if:

Entropy is preserved on state refresh
H∗(S ′|I ) ≥ H∗(S)− ε
H∗(S ′|S) ≥ H∗(I )− ε

Entropy is preserved on output request
H∗(O) ≥ H∗(S)− ε
H∗(S ′|O) ≥ H∗(S)− ε

Refinement
Definition applicable for all entropy definitions, however not relevant
for Shannon Entropy
If all properties are requested, H∗ = Hc
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Model extension

Entropy preservation model
Attacker can interact with generator G
with 3 interfaces:

Input control: any entropy input
Internal state compromise
Output request
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Model extension

Entropy preservation model
Generator preserves entropy if A can’t
distinguish generator output from output
with given entropy:

on state compromise
on output request

Theorem
Hc 0-preservation =⇒ robustness
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Application to DSA Generator analysis

Description
Optional input
Output generation:

O = H((S + I ) mod 2160)
S ′ = (S + O + 1) mod 2160

Theorem
If H is a random oracle =⇒ H∞ 0-preservation
If H is collision resistant =⇒ Hc 1-preservation, if Hc(I ) > 8
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Application to Linux PRNG analysis

Theorem
If H is a random oracle =⇒ H∞ 0-preservation
If H is collision resistant =⇒ Hc 1-preservation, if Hc(I ) > O(1)
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Conclusion

New security model for PRNG analysis and applications
Extension of Barak-Halevi model
Use of Min-Entropy
Applications: security analysis of DSA and Linux Generators

Future work
Security analysis of Openssl and Java Generators and others (virtual
or embedded system)
Supplementary security property: entropy accumulation
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Thanks for your attention
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