Need for randomness in concrete situations Barak-Halevi model Model i Applicati Conclusion
000 0000000000 000 00 00

Extension of Barack Halevi model and applications

Sylvain Ruhault (ENS, Oppida)

11/10/2012

Join work with Yevgeniy Dodis (NYU), David Pointcheval (ENS) and Damien
Vergnaud (ENS)

Need for randomness in concrete situations Barak-Halevi model Model i Applicati Concl
000 0000000000 000 [e]e) [e]e)

Agenda

o Need for randomness in concrete situations
© Barak-Halevi model

© Model extension

o Applications

e Conclusion

u]
o)
I
i
it

Need for rand in concrete si i Barak-Halevi model Model i Applicati C
@00 0000000000 000 [e]e) [e]e)

Need for randomness in concrete situations

Needs B
o (Session, root, servers) keys generation ..O;,%_‘s,
@ Encryption : RSA paddings, El Gamal, CBC “:r,'

mode

@ Signature : DSA
@ Nonces in security protocols e.g. TLS, IPSEC)

Tools for randomness generation
@ Network devices & T~
o Isolated servers WW&
@ Dedicated crytographic software or hardware %{}{:}
@ Java applets, web browsers)

Need for rand. in concrete si i Barak-Halevi model Model i Applicati Conclusi

(o] lo} 0000000000 [e]e]e} (e]e] (e]e]

Need for randomness in concrete situations

Implementation example: TLS protocol

@ TLS protocol needs randomness:

o Exchange, session, signature keys generation
e Nonces, paddings, initialisation vectors
generation

@ Typical server implementation uses Apache
mod _ssl module on a Linux server

@ Typical client implementation uses browser or
Java applet

Need for rand. in concrete si i Barak-Halevi model Model extension Applications Conclusion
ooe 0000000000 000 [e]e) [e]e)

Need for randomness in concrete situations

Recent vulnerabilities

@ Implementation vulnerabilities
e "Ron was wrong, Whit is right"
e Openssl Debian implementation -
@ Attacks using bad PRNG . N
e DSS private signature key recovery: when a LCG
is used, 3 signatures can help signature forgery
o RSA OAEP with e=3 is not one way when used
with poor randomness

Need for rand.
000

Barak-Halevi model Model
9000000000 000

Appli

Definitions

Pseudorandom generator

A function G : {0,1}9 — {0,1}™ is a
pseudorandom generator if

@ m> d (G expands)

@ Output of a truly random seed is
indistinguishable from random

Je,V PPT A,Vn,

|PrIA(G(Ug(n))) = 1] = PriA(Un(n)) = 1]| < €(n)

o

00100111010 -+ 0010111010110100101101001001011010011010110

J

Need for rand.
000

Barak-Halevi model Model
O@00000000 000

Appli

Definitions

Generator without input
@ Seed Sy

@ Successive outputs of G with a
deterministic function

o Examples: LCG, DSA generator

Internal

Generator with input

State

o Additionnal data used to refresh the
internal state of the generator

o Examples: DSA, Linux, Openssl,
Java generators

u}

N

Need for rand.
000

Associated security models

Attacker can interact with generator G
with 3 interfaces:

@ Input control

@ Internal state compromise
o Output request

Barak-Halevi model
00@0000000

Model
000

Security models

OUTPUT

Internal

State O

Internal
Statej

[m]

]
oy

N

Need for rand in concrete si i Barak-Halevi model Model
000 000@000000 000

Security models

Resilience

@ Potentially total control of the
input data

@ No access to internal state

INPUT

o Output request

A

Backward and forward security

@ Internal state compromise

@ Forward security: past outputs

requests

@ Backward security: future outputs
requests

Need for rand. in
000

Barak-Halevi model

Model

[e]e]e}

Security models

Associated security models
Generator is

@ Resilient, or

@ Backward secure, or

@ Forward secure,

if A can't distinguish generator
output from random output.

Internal

OUTPUT

Internal

State

Relations between security properties

No implication between resilience, backward security and forward security

J

N

Need for rand.
000

Barak-Halevi model

Model Applicati C
00000e0000 000 [e]e) [e]e)
Security models
Barak-Halevi model T
Attacker can interact with generator G
with 4 interfaces:

@ Input control:

OUTPUT

e no entropy input
e high entropy input

Internal
Statej

@ Internal state compromise
e Output request

]

N

Need for rand in concrete si i Barak-Halevi model Model i Applicati Conclusi

[e]e]e} O00000e000 [e]e]e} (e]e] (e]e]

Security models

Barak-Halevi model A kel \

State O

Generator is robust if, once G is
refreshed with a high entropy input, A
can't distinguish : e

State

@ state from random on state
compromise

@ generator output from random \ - J

output on output request

Relations between security properties
Robustness implies resilience, backward security and forward security

u]
o)
I
i
it

Need for randomness in concrete situations Barak-Halevi model Model i Applicati Conclusion
000 0000000800 000 00 00

Entropy definitions

High entropy input ?

Shannon Entropy: Hy(X) = 3= P[X = x] x log, (=)
xeX

o X :{0,1}128 — {0, 1}128

o PriX =0] =271

o PriX =y,y #0] = L3
Then Hy(X) = 127,997

But ...
o A key K generated with this distribution. Then adversary A has
probability 2715 of guessing it by deriving it from x =0
o If 215 keys are generated with this distribution, then probability that
one key is derived from x =0is 1 — e~! ~ 0.63

Need for rand
000

Barak-Halevi model Model
0000000080 000

Entropy definitions

High entropy = High Min-Entropy

e Min-Entropy: H.(X) =)r(nel)rg {Iogz(m)}
e Computational Min-Entropy: H.(X) > k,

o AY, Hao(Y) = k

o 3¢, VA, Vn, PrlA(X) = 1] — Pr[A(Y) = 1]| < ¢(n)
H.(X) =15

with distribution X

Need for rand.
000

Barak-Halevi model

Model Appli Concl
000000000 e 000 [e]e) [e]e)
Analysis
Barak-Halevi model analysis o
@ Attacker should be able to interact
with any Min-Entropy input.

OUTPUT

@ Min-entropy should be guaranteed
after compromise

Internal
Statej

]
oy

[m]

N

Need for d s in te si i Barak-Halevi model Model i Appli

Conclusi

[e]e]e} 0000000000 @00 (e]e]

Model extension

Entropy preservation

A pseudorandom generator G e-preserves {1, oo, c}-entropy if:
@ Entropy is preserved on state refresh
o H*(S'|1) > H*(S) —¢
o H*(S'|S) > H*(I) — ¢
@ Entropy is preserved on output request
e H*(O) > H*(S) —¢
o H*(S'|0) > H*(S) —¢

(e]e]

Refinement

@ Definition applicable for all entropy definitions, however not relevant

for Shannon Entropy
o If all properties are requested, H* = H,

Need for rand.
000

Barak-Halevi model Model
0000000000 (o] o}

Model extension

Entropy preservation model

Internal

State O

Attacker can interact with generator G
with 3 interfaces:

OUTPUT

@ Input control: any entropy input
@ Internal state compromise
o Output request

Internal
Statej

]
oy

[m]

N

Need for rand. in concrete si i Barak-Halevi model Model i Applicati Conclusi
000 0000000000 ooe [e]e) [e]e)

Model extension

Internal

Entropy preservation model r

Generator preserves entropy if A can't
distinguish generator output from output
with given entropy: Internal

State

@ on state compromise

@ on output request

H. 0-preservation => robustness

Theorem J

u]
o)

I

i
it
N
pe)
i)

Need for rand
000

Barak-Halevi model Model
0000000000 000

Application to DSA Generator analysis

Description

@ Optional input

@ Output generation:

o O=H((S+1) mod 2'%)

e S'=(S+0+1) mod 2°

]
-/
Theorem

@ If H is a random oracle = H,, 0-preservation

e If H is collision resistant = H. 1-preservation, if H.(I) > 8

Need for

ow 1 e Soosoc0e0s 600" S
Application to Linux PRNG analysis
C TG 2
— S
Kéj

\&
Theorem

4

e If H is a random oracle —> H,, 0-preservation

e If H is collision resistant = H. 1-preservation, if H.(1) > O(1)

Need for randomness in concrete situations Barak-Halevi model Model i Applicati c

[e]e]e} 0000000000 [e]e]e} (e]e] [Ie]

Conclusion

New security model for PRNG analysis and applications
@ Extension of Barak-Halevi model
@ Use of Min-Entropy
@ Applications: security analysis of DSA and Linux Generators

Future work

@ Security analysis of Openssl and Java Generators and others (virtual
or embedded system)

@ Supplementary security property: entropy accumulation

Need for randomness in concrete situations Barak-Halevi model
000 0000000000

Model
000

Thanks for your attention

TOUR OF ACCOUNTING

OVER HERE
WE HAVE OUR
RANDOM NUMBER
GENERATOR..

—

www lilbertcom _somscamssoleom

NINE NINE H
NINE NINE H
NINE NINE H
3
g
|

THATS
RANDOM?

by
&3

oce

	Need for randomness in concrete situations
	Barak-Halevi model
	Model extension
	Applications
	Conclusion

