Symplectic reduction for finite-dimensional Hamiltonian systems

Marine Fontaine

School of Mathematics The University of Manchester

Université de Rennes 1, 23 April 2014

Symplectic manifold

A symplectic manifold (P,ω) is a pair consisting of a smooth manifold P together with a differential 2-form $\omega\in\Omega^2(P)$ which is

• closed, that is $d\omega = 0$

non-degenerate

The non-degeneracy condition implies that $\forall z \in P$, there is an injection $\omega(z)^{\flat}: T_z P \to T_z^* P$ defined by

$$\omega(z)^{\flat}(v_z)(w_z) := \omega(z)(v_z, w_z)$$

for all $v_z, w_z \in T_z P$. If it is an isomorphism, we say that ω is strongly non-degenerate.

Examples of symplectic manifolds

Example 1. The product $P = V \times V^*$ where V is a finite dimensional real vector space with the constant 2-form $\omega((v, \alpha), (w, \beta)) = \langle \alpha, w \rangle - \langle \beta, v \rangle$ is a symplectic vector space.

Example 2. The cylinder $S^1 \times \mathbb{R}$ with coordinates (θ, p) is a symplectic manifold with $\omega = d\theta \wedge dp$.

Example 3. The torus \mathbb{T}^2 with periodic coordinates (θ, ϕ) is a symplectic manifold with $\omega = d\theta \wedge d\phi$.

Example 4. The two-sphere S^2 of radius r is a symplectic manifold with the standard area element $\omega = r^2 \sin(\theta) d\theta \wedge d\phi$.

Let (P, ω) be a symplectic manifold. A vector field $X \in \mathfrak{X}(P)$ is a Hamiltonian vector field if there is a differentiable function $H: P \to \mathbb{R}$ such that, for all $z \in P$ and $v_z \in T_z P$,

$$\omega(z)(X(z), v_z) = DH(z) \cdot v_z.$$

In that case, we write $X =: X_H$.

We also define the associated Hamiltonian dynamical system, whose points z evolve in time, by the differential equation

$$\dot{z} = X_H(z).$$

Darboux' Theorem. Let (P, ω) be a strong symplectic manifold. Then, in a neighborhood of each $z \in P$, there is a local coordinate chart in which ω is constant.

Corollary. If (P, ω) is a finite-dimensional symplectic manifold, then P is even dimensional and, in a neighborhood of $z \in P$, there are local coordinates $(q^1, \dots, q^n, p_1, \dots, p_n)$ such that

$$\omega = \sum_{i=1}^{n} dq^{i} \wedge dp_{i}.$$

In such coordinates $(q^1, \cdots, q^n, p_1, \cdots, p_n)$, the relation

$$\omega(z)(X_H(z), v_z) = DH(z) \cdot v_z = \langle grad_z(H), v_z \rangle.$$

implies that $X_H(z) = (\frac{\partial H}{\partial p_i}, -\frac{\partial H}{\partial q^i})$ and then, the associated dynamical system is

Two identifications of TSO(3) with the product $SO(3) \times \mathbb{R}^3$:

- The body variables $(\Lambda, \delta \Theta) \in SO(3) \times \mathbb{R}^3$ corresponds to the left trivialization of TSO(3).
- The space variables (Λ, δθ) ∈ SO(3) × ℝ³ corresponds to the right trivialization of TSO(3).

A pair $(\Lambda, \delta \Lambda)$ is an element of TSO(3) if and only if $\Lambda \in SO(3)$ and

$$\Lambda \widehat{\delta \Theta} = \delta \Lambda = \widehat{\delta heta} \Lambda$$

for some vectors $\delta \Theta$ and $\delta \theta$ in \mathbb{R}^3 . The isomorphism $\hat{}: \mathbb{R}^3 \to \mathfrak{so}(3)$ identifies a vector $\mathbf{w} \in \mathbb{R}^3$ with a skewsymmetric matrix $\hat{\mathbf{w}} \in \mathfrak{so}(3)$ satisfying $\hat{\mathbf{w}} \mathbf{x} = \mathbf{w} \times \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^3$.

The phase space $T^*SO(3)$ can be endowed with a symplectic structure.

Two identifications of $T^*SO(3)$ with the product $SO(3) \times \mathbb{R}^3$:

- The body variables (Λ, Π) ∈ SO(3) × ℝ³ corresponds to the left trivialization of T^{*}SO(3).
- The space variables $(\Lambda, \pi) \in SO(3) \times \mathbb{R}^3$ corresponds to the right trivialization of $T^*SO(3)$.

A pair (Λ, Π_{Λ}) is an element of $T^*SO(3)$ if and only if $\Lambda \in SO(3)$ and

$$\Lambda \breve{\Pi} = \Pi_{\Lambda} = \breve{\pi} \Lambda$$

for some vectors $\mathbf{\Pi}$ and π in \mathbb{R}^3 . The isomorphism $\check{}: \mathbb{R}^3 \to \mathfrak{so}(3)^*$ identifies a vector $\mathbf{v} \in \mathbb{R}^3$ with the covector $\check{\mathbf{v}} \in \mathfrak{so}(3)^*$ uniquely defined by $\langle \check{\mathbf{v}}, \widehat{\mathbf{w}} \rangle = \mathbf{v} \cdot \mathbf{w}$ for all $\widehat{\mathbf{w}} \in \mathfrak{so}(3)$.

For details see: *The heavy top: a geometric treatment* by D. Lewis, T. Ratiu, J.C. Simo and J.E. Marsden 1991

For $(\Lambda, \Pi) \in SO(3) \times \mathbb{R}^3$, the Hamiltonian in body coordinates is

$$H(\Lambda, \mathbf{\Pi}) = \frac{1}{2} \mathbf{\Pi} \cdot \mathbf{\Omega} + mg \ell \Lambda^T \mathbf{e_3} \cdot \mathbf{e_3}$$

where $\Omega = \mathbb{I}_0^{-1} \Pi$ is the body angular velocity of the top and \mathbb{I}_0 is the reference inertia tensor. The corresponding Hamiltonian vector field

$$X_H(\Lambda, \mathbf{\Pi}) = (\Lambda \widehat{\mathbf{X}}_{\Theta}, \mathbf{X}_{\Pi}) \in T_\Lambda SO(3) \times \mathbb{R}^3$$

must satisfy

$$\omega(\Lambda, \mathbf{\Pi}) \left((\Lambda \widehat{\mathbf{X}}_{\Theta}, \mathbf{X}_{\Pi}), (\Lambda \widehat{\delta \Theta}, \delta \mathbf{\Pi}) \right) = DH(\Lambda, \mathbf{\Pi}) \cdot (\Lambda \widehat{\delta \Theta}, \delta \mathbf{\Pi}).$$

For all $(\Lambda \widehat{\delta \Theta}, \delta \mathbf{\Pi}) \in T_{\Lambda} SO(3) \times \mathbb{R}^3$.

The symplectic form on $SO(3) \times \mathbb{R}^3$ is given by

$$\omega(\Lambda, \mathbf{\Pi}) \left((\Lambda \widehat{\mathbf{X}}_{\Theta}, \mathbf{X}_{\Pi}), (\Lambda \widehat{\delta \Theta}, \delta \mathbf{\Pi}) \right) = (\mathbf{\Pi} \times \mathbf{X}_{\Theta} - \mathbf{X}_{\Pi}) \cdot \delta \Theta + \mathbf{X}_{\Theta} \cdot \delta \mathbf{\Pi}$$

while the directional derivative of the Hamiltonian H in the direction $(\Lambda\widehat{\delta\Theta},\delta\mathbf{\Pi})\in T_{\Lambda}SO(3)\times\mathbb{R}^3$ is

$$DH(\Lambda, \mathbf{\Pi}) \cdot (\Lambda \widehat{\delta \Theta}, \delta \mathbf{\Pi}) = -mg\ell(\Lambda^T \mathbf{e_3} \times \mathbf{e_3}) \cdot \delta \Theta + \mathbf{\Omega} \cdot \delta \mathbf{\Pi}.$$

We find eventually the Hamiltonian vector field

$$X_H(\Lambda, \mathbf{\Pi}) = \left(\Lambda \widehat{\mathbf{X}}_{\Theta}, \mathbf{X}_{\Pi}\right) = \left(\Lambda \widehat{\mathbf{\Omega}}, \mathbf{\Pi} \times \mathbf{\Omega} + mg\ell(\Lambda^T \mathbf{e_3} \times \mathbf{e_3})\right).$$

Since

$$(\dot{\Lambda}, \dot{\Pi}) = X_H(\Lambda, \Pi),$$

the associated Hamiltonian dynamical system (in body coordinates) is

$$\left\{ \begin{array}{ll} \dot{\Lambda} &=\Lambda\widehat{\mathbf{\Omega}} \\ \dot{\mathbf{\Pi}} &=\mathbf{\Pi}\times\mathbf{\Omega}+mg\ell(\Lambda^T\mathbf{e_3}\times\mathbf{e_3}) \end{array} \right.$$

where $\mathbf{\Omega} = \mathbb{I}_0^{-1} \mathbf{\Pi} \in \mathbb{R}^3$ corresponds to the angular velocity in the body frame and $\Lambda \in SO(3)$.

Infinitesimal generators

Consider a smooth action of a Lie group G on a symplectic manifold (P, ω)

$$\begin{array}{ccc} \phi:G\times P & \to P \\ (g,z) & \mapsto \phi_g(z) \end{array}$$

The infinitesimal generator of this action corresponding to a Lie algebra element $\xi \in \mathfrak{g}$ is the vector field $\xi_P \in \mathfrak{X}(P)$ given by

$$\xi_P(z) := \left. \frac{\mathsf{d}}{\mathsf{d}\mathsf{t}} \right|_{t=0} \phi_{exp(t\xi)}(z).$$

We are interested in the case in which the vector field ξ_P is globally Hamiltonian, that is, when we have $\forall z \in P$ and $v_z \in T_z P$,

$$\omega(z)(\xi_P(z), v_z) = dj_{\xi}(z) \cdot v_z$$

for some smooth function $j_{\xi}: P \to \mathbb{R}$.

Momentum map

Let a Lie group G acting on the symplectic manifold (P, ω) . If the action does preserve the symplectic form and, for all $\xi \in \mathfrak{g}$, the vector field ξ_P is globally Hamiltonian, the map $\mathbf{J}: P \to \mathfrak{g}^*$ defined by

$$\langle \mathbf{J}(z), \xi \rangle = j_{\xi}(z)$$

for all $\xi \in \mathfrak{g}$ and $z \in P$ is called the momentum map of the action.

A continuous symmetry of a Hamiltonian system (P,ω,H) is a smooth vector field $X\in\mathfrak{X}(P)$ that

- preserves the Hamiltonian function, $\pounds_X H = 0$
- respects the structure of the state-space, $\pounds_X \omega = 0$

The isotropy group $SO(3)_{\mathbf{e_3}} = \{ B \in SO(3) \mid B\mathbf{e_3} = \mathbf{e_3} \} \simeq S^1$ acts on $SO(3) \times \mathbb{R}^3$ (left action) by

 $\phi_{\boldsymbol{B}}(\Lambda, \boldsymbol{\Pi}) = (\boldsymbol{B}\Lambda, \boldsymbol{\Pi}).$

- This action corresponds to a rotation of the top about the vertical axis e₃.
 This action lets the Hamiltonian H(Λ, Π) = ½Π ⋅ Ω + mgℓΛ^Te₃ ⋅ e₃ invariant.
 Can be shown that this action preserves the symplectic
 - form, that is, $\phi_B^*\omega = \omega$ for all $B \in SO(3)_{\mathbf{e}_3}$.

The infinitesimal generators are continuous symmetries of the Hamiltonian system $(SO(3)\times \mathbb{R}^3, \omega, H).$

Noether's Theorem. Assume that the Hamiltonian *G*-system (P, ω, H, G) admits a momentum map $\mathbf{J} : P \to \mathfrak{g}^*$. Then, if every infinitesimal generator $\xi_P \in \mathfrak{X}(P)$ of the action of *G* is a continuous symmetry, the momentum map is a constant of motion, that is,

$$\mathbf{J} \circ \phi_t = \mathbf{J}$$

where ϕ_t is the flow of the Hamiltonian vector field X_H .

Symplectic reduction theorem

Reduction of symplectic manifolds with symmetry by J. Marsden and A. Weinstein 1974

Symplectic reduction theorem. Let (P, ω) be a symplectic manifold. Assume there is a smooth, free and proper action of a Lie group G on P, which preserves the symplectic form, together with an (equivariant) momentum map $\mathbf{J}: P \to \mathfrak{g}^*$. For $\mu \in \mathfrak{g}^*$ a regular value of \mathbf{J} , the reduced space $\mathbf{J}^{-1}(\mu)/G_{\mu}$ is a symplectic manifold with symplectic form ω_{μ} uniquely characterized by the relation $\pi^*_{\mu}\omega_{\mu} = i^*_{\mu}\omega$ where

• $i_{\mu} : \mathbf{J}^{-1}(\mu) \hookrightarrow P$ is the natural inclusion

- $\pi_{\mu}: \mathbf{J}^{-1}(\mu) \to \mathbf{J}^{-1}(\mu)/G_{\mu}$ is the quotient map
- $G_{\mu} := \{g \in G \mid Ad_g^* \mu = \mu\}$ the isotropy group at μ for the coadjoint action on \mathfrak{g}^*

Symplectic reduction theorem

The momentum map $\mathbf{J}:SO(3)\times\mathbb{R}^3\to\mathbb{R}$ corresponding to this action is $\mathbf{J}(\Lambda,\mathbf{\Pi})=\mathbf{\Pi}\cdot\Lambda^T\mathbf{e_3}$

A level set $\mathbf{J}^{-1}(\mu)$ corresponds to the conserved quantity $\mathbf{\Pi} \cdot \Lambda^T \mathbf{e_3} = \mu$.

- $\mathbf{J}^{-1}(\mu)$ is a smooth manifold.
- The induced S¹-action preserves J⁻¹(µ) and is smooth, free and proper.
- \blacktriangleright The reduced space $\mathbf{J}^{-1}(\mu)/S^1$ is a smooth manifold.
- $(\mathbf{J}^{-1}(\mu)/S^1, \omega_\mu)$ is symplectomorphic to $(\mathcal{P}_\mu, \omega_\mu^\mathcal{P})$ where $\mathcal{P}_\mu = \{(\mathbf{\Gamma}, \mathbf{\Pi}) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid \|\mathbf{\Gamma}\| = 1 \text{ et } \mathbf{\Pi} \cdot \mathbf{\Gamma} = \mu\}$ and $\omega_\mu^\mathcal{P}$ will be defined below.

Taking $(\mathcal{P}_{\mu}, \omega_{\mu}^{\mathcal{P}})$ as a model space for the reduced space $(\mathbf{J}^{-1}(\mu)/S^1, \omega_{\mu})$, the reduced Hamiltonian is

$$H_{\mu}(\boldsymbol{\Gamma},\boldsymbol{\Pi})=\frac{1}{2}\boldsymbol{\Pi}\cdot\boldsymbol{\Omega}+mg\ell\boldsymbol{\Gamma}\cdot\mathbf{e_{3}}$$

for $(\Gamma, \Pi) \in \mathcal{P}_{\mu}$. The corresponding reduced Hamiltonian vector field

$$X_{H_{\mu}}(\mathbf{\Gamma},\mathbf{\Pi}) = (\mathbf{\Gamma} \times \mathbf{X}_{\Theta}, \mathbf{X}_{\Pi}) \in T_{(\mathbf{\Gamma},\mathbf{\Pi})} \mathcal{P}_{\mu}$$

must satisfy

 $\omega_{\mu}^{\mathcal{P}}(\boldsymbol{\Gamma},\boldsymbol{\Pi})\left((\boldsymbol{\Gamma}\times\mathbf{X}_{\Theta},\mathbf{X}_{\Pi}),(\boldsymbol{\Gamma}\times\delta\boldsymbol{\Theta},\delta\boldsymbol{\Pi})\right)=DH_{\mu}(\boldsymbol{\Gamma},\boldsymbol{\Pi})\cdot(\boldsymbol{\Gamma}\times\delta\boldsymbol{\Theta},\delta\boldsymbol{\Pi})$

for all $(\mathbf{\Gamma} \times \delta \mathbf{\Theta}, \delta \mathbf{\Pi}) \in T_{(\mathbf{\Gamma}, \mathbf{\Pi})} \mathcal{P}_{\mu}$.

The reduced symplectic form on \mathcal{P}_{μ} is

 $\omega_{\mu}^{\mathcal{P}}(\boldsymbol{\Gamma},\boldsymbol{\Pi})\left((\boldsymbol{\Gamma}\times\mathbf{X}_{\Theta},\mathbf{X}_{\Pi}),(\boldsymbol{\Gamma}\times\delta\boldsymbol{\Theta},\delta\boldsymbol{\Pi})\right)=(\boldsymbol{\Pi}\times\mathbf{X}_{\Theta}-\mathbf{X}_{\Pi})\cdot\delta\boldsymbol{\Theta}+\mathbf{X}_{\Theta}\cdot$

while the directional derivative of the reduced Hamiltonian H_{μ} in the direction $(\mathbf{\Gamma} \times \delta \mathbf{\Theta}, \delta \mathbf{\Pi}) \in T_{(\mathbf{\Gamma}, \mathbf{\Pi})} \mathcal{P}_{\mu} \simeq \mathbb{R}^3 \times \mathbb{R}^3$ is

 $DH_{\mu}(\Gamma, \Pi) \cdot (\Gamma \times \delta \Theta, \delta \Pi) = -mg\ell(\Gamma \times \mathbf{e_3}) \cdot \delta \Theta + \Omega \cdot \delta \Pi.$

We find eventually the reduced Hamiltonian vector field

$$X_{H_{\mu}}(\boldsymbol{\Gamma},\boldsymbol{\Pi}) = (\boldsymbol{\Gamma} \times \mathbf{X}_{\Theta}, \mathbf{X}_{\Pi}) = (\boldsymbol{\Gamma} \times \boldsymbol{\Omega}, \boldsymbol{\Pi} \times \boldsymbol{\Omega} + mg\ell(\boldsymbol{\Gamma} \times \mathbf{e_3})) \,.$$

The reduced equations of motion on P_{μ} are then given by

$$\left\{ egin{array}{ll} \dot{\Gamma} &= \Gamma imes \mathbf{\Omega} \ \dot{\Pi} &= \Pi imes \mathbf{\Omega} + mg\ell(\Gamma imes \mathbf{e_3}) \end{array}
ight.$$

where $\| \Gamma \| = 1$ and $\Pi \cdot \Gamma = \mu$ for $\Gamma, \Pi \in \mathbb{R}^3$.

References.

- Hamiltonian Reduction by Stages by J. E. Marsden, G. Misiolek, J.-P. Ortega, M. Perlmutter and T. S. Ratiu 2009
- ► Foundations of mechanics by R. Abraham and J. E. Marsden 1987
- Global aspects of classical integrable systems by R. H. Cushman and L.M. Bates 2004
- The heavy top: a geometric treatment by D. Lewis, T. Ratiu, J.C. Simo and J.E. Marsden 1991
- ► Mathematical methods of classical mechanics by V.I. Arnold 1988
- Reduction of symplectic manifolds with symmetry by J. Marsden and A. Weinstein 1974