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Symplectic manifold

A symplectic manifold (P, ω) is a pair consisting of a smooth
manifold P together with a differential 2-form ω ∈ Ω2(P )
which is

I closed, that is dω = 0

I non-degenerate

The non-degeneracy condition implies that ∀z ∈ P , there is an injection
ω(z)[ : TzP → T ∗z P defined by

ω(z)[(vz)(wz) := ω(z)(vz, wz)

for all vz, wz ∈ TzP. If it is an isomorphism, we say that ω is strongly
non-degenerate.
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Examples of symplectic manifolds

Example 1. The product P = V × V ∗ where V is a finite dimensional
real vector space with the constant 2-form
ω ((v, α), (w, β)) = 〈α,w〉 − 〈β, v〉 is a symplectic vector space.

Example 2. The cylinder S1 × R with coordinates (θ, p) is a symplectic
manifold with ω = dθ ∧ dp.

Example 3. The torus T2 with periodic coordinates (θ, φ) is a symplectic
manifold with ω = dθ ∧ dφ.

Example 4. The two-sphere S2 of radius r is a symplectic manifold with
the standard area element ω = r2 sin(θ)dθ ∧ dφ.
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Hamiltonian systems on symplectic manifolds

Let (P, ω) be a symplectic manifold. A vector field X ∈ X(P )
is a Hamiltonian vector field if there is a differentiable function
H : P → R such that, for all z ∈ P and vz ∈ TzP ,

ω(z)(X(z), vz) = DH(z) · vz.

In that case, we write X =: XH .

We also define the associated Hamiltonian dynamical system, whose
points z evolve in time, by the differential equation

ż = XH(z).
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Hamiltonian systems on symplectic manifolds

Darboux’ Theorem. Let (P, ω) be a strong symplectic mani-
fold. Then, in a neighborhood of each z ∈ P , there is a local
coordinate chart in which ω is constant.

Corollary. If (P, ω) is a finite-dimensional symplectic manifold,
then P is even dimensional and, in a neighborhood of z ∈ P ,
there are local coordinates (q1, · · · , qn, p1, · · · , pn) such that

ω =

n∑
i=1

dqi ∧ dpi.
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In such coordinates (q1, · · · , qn, p1, · · · , pn), the relation

ω(z)(XH(z), vz) = DH(z) · vz = 〈gradz(H), vz〉.

implies that XH(z) = (∂H∂pi ,−
∂H
∂qi

) and then, the associated dynamical
system is

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi
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Example: the Heavy Top

Two identifications of TSO(3) with the product SO(3)× R3:

I The body variables (Λ, δΘ) ∈ SO(3)× R3 corresponds
to the left trivialization of TSO(3).

I The space variables (Λ, δθ) ∈ SO(3)×R3 corresponds to
the right trivialization of TSO(3).

A pair (Λ, δΛ) is an element of TSO(3) if and only if Λ ∈ SO(3) and

Λδ̂Θ = δΛ = δ̂θΛ

for some vectors δΘ and δθ in R3. The isomorphism ˆ: R3 → so(3)
identifies a vector w ∈ R3 with a skewsymmetric matrix ŵ ∈ so(3)
satisfying ŵx = w × x for all x ∈ R3.
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Example: the Heavy Top

The phase space T ∗SO(3) can be endowed with a symplectic structure.
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Example: the Heavy Top

Two identifications of T ∗SO(3) with the product SO(3)× R3:

I The body variables (Λ,Π) ∈ SO(3)× R3 corresponds to
the left trivialization of T ∗SO(3).

I The space variables (Λ, π) ∈ SO(3)× R3 corresponds to
the right trivialization of T ∗SO(3).

A pair (Λ,ΠΛ) is an element of T ∗SO(3) if and only if Λ ∈ SO(3) and

ΛΠ̆ = ΠΛ = π̆Λ

for some vectors Π and π in R3. The isomorphism ˘ : R3 → so(3)∗

identifies a vector v ∈ R3 with the covector v̆ ∈ so(3)∗ uniquely defined
by 〈v̆, ŵ〉 = v ·w for all ŵ ∈ so(3).
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Example: the Heavy Top

For details see: The heavy top: a geometric treatment by D. Lewis, T.
Ratiu, J.C. Simo and J.E. Marsden 1991
For (Λ,Π) ∈ SO(3)× R3, the Hamiltonian in body coordinates is

H(Λ,Π) = 1
2Π ·Ω +mg`ΛTe3 · e3

where Ω = I−1
0 Π is the body angular velocity of the top and I0 is the

reference inertia tensor. The corresponding Hamiltonian vector field

XH(Λ,Π) = (ΛX̂Θ,XΠ) ∈ TΛSO(3)× R3

must satisfy

ω(Λ,Π)
(

(ΛX̂Θ,XΠ), (Λδ̂Θ, δΠ)
)

= DH(Λ,Π) · (Λδ̂Θ, δΠ).

For all (Λδ̂Θ, δΠ) ∈ TΛSO(3)× R3.
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Example: the Heavy Top

The symplectic form on SO(3)× R3 is given by

ω(Λ,Π)
(

(ΛX̂Θ,XΠ), (Λδ̂Θ, δΠ)
)

= (Π×XΘ −XΠ) · δΘ + XΘ · δΠ

while the directional derivative of the Hamiltonian H in the direction
(Λδ̂Θ, δΠ) ∈ TΛSO(3)× R3 is

DH(Λ,Π) · (Λδ̂Θ, δΠ) = −mg`(ΛTe3 × e3) · δΘ + Ω · δΠ.

We find eventually the Hamiltonian vector field

XH(Λ,Π) =
(

ΛX̂Θ,XΠ

)
=
(

ΛΩ̂,Π×Ω +mg`(ΛTe3 × e3)
)
.
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Example: the Heavy Top

Since
(Λ̇, Π̇) = XH(Λ,Π),

the associated Hamiltonian dynamical system (in body coordinates) is{
Λ̇ = ΛΩ̂

Π̇ = Π×Ω +mg`(ΛTe3 × e3)

where Ω = I−1
0 Π ∈ R3 corresponds to the angular velocity in the body

frame and Λ ∈ SO(3).
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Infinitesimal generators

Consider a smooth action of a Lie group G on a symplectic manifold (P, ω)

φ : G× P → P

(g, z) 7→ φg(z)

The infinitesimal generator of this action corresponding to a Lie algebra
element ξ ∈ g is the vector field ξP ∈ X(P ) given by

ξP (z) :=
d

dt

∣∣∣∣
t=0

φexp(tξ)(z).

We are interested in the case in which the vector field ξP is globally
Hamiltonian, that is, when we have ∀z ∈ P and vz ∈ TzP ,

ω(z)(ξP (z), vz) = djξ(z) · vz

for some smooth function jξ : P → R.
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Momentum map

Let a Lie group G acting on the symplectic manifold (P, ω). If
the action does preserve the symplectic form and, for all ξ ∈ g,
the vector field ξP is globally Hamiltonian, the map J : P → g∗

defined by
〈J(z), ξ〉 = jξ(z)

for all ξ ∈ g and z ∈ P is called the momentum map of the
action.
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Continuous symmetry

A continuous symmetry of a Hamiltonian system (P, ω,H) is
a smooth vector field X ∈ X(P ) that

I preserves the Hamiltonian function, £XH = 0

I respects the structure of the state-space, £Xω = 0
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Example: the Heavy Top

The isotropy group SO(3)e3 = {B ∈ SO(3) | Be3 = e3} ' S1 acts on
SO(3)× R3 (left action) by

φB(Λ,Π) = (BΛ,Π).

I This action corresponds to a rotation of the top about
the vertical axis e3.

I This action lets the Hamiltonian
H(Λ,Π) = 1

2Π ·Ω +mg`ΛTe3 · e3 invariant.

I Can be shown that this action preserves the symplectic
form, that is, φ∗Bω = ω for all B ∈ SO(3)e3 .

The infinitesimal generators are continuous symmetries of the Hamiltonian
system (SO(3)× R3, ω,H).
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Hamiltonian version of Noether’s theorem

Noether’s Theorem. Assume that the Hamiltonian G-system
(P, ω,H,G) admits a momentum map J : P → g∗. Then, if
every infinitesimal generator ξP ∈ X(P ) of the action of G is
a continuous symmetry, the momentum map is a constant of
motion, that is,

J ◦ φt = J

where φt is the flow of the Hamiltonian vector field XH .
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Symplectic reduction theorem

Reduction of symplectic manifolds with symmetry by J. Marsden and A.
Weinstein 1974

Symplectic reduction theorem. Let (P, ω) be a symplectic
manifold. Assume there is a smooth, free and proper action
of a Lie group G on P , which preserves the symplectic form,
together with an (equivariant) momentum map J : P → g∗.
For µ ∈ g∗ a regular value of J, the reduced space J−1(µ)/Gµ
is a symplectic manifold with symplectic form ωµ uniquely char-
acterized by the relation π∗µωµ = i∗µω where

I iµ : J−1(µ) ↪→ P is the natural inclusion

I πµ : J−1(µ)→ J−1(µ)/Gµ is the quotient map

I Gµ :=
{
g ∈ G | Ad∗gµ = µ

}
the isotropy group at µ for

the coadjoint action on g∗
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Symplectic reduction theorem
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Example: the Heavy Top

The momentum map J : SO(3)× R3 → R corresponding to this action is

J(Λ,Π) = Π · ΛTe3

A level set J−1(µ) corresponds to the conserved quantity Π · ΛTe3 = µ.

I J−1(µ) is a smooth manifold.

I The induced S1-action preserves J−1(µ) and is smooth,
free and proper.

I The reduced space J−1(µ)/S1 is a smooth manifold.

I (J−1(µ)/S1, ωµ) is symplectomorphic to (Pµ, ωPµ ) where
Pµ =

{
(Γ,Π) ∈ R3 × R3 | ‖ Γ ‖= 1 et Π · Γ = µ

}
and

ωPµ will be defined below.
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Example: the Heavy Top

Taking (Pµ, ωPµ ) as a model space for the reduced space (J−1(µ)/S1, ωµ),
the reduced Hamiltonian is

Hµ(Γ,Π) = 1
2Π ·Ω +mg`Γ · e3

for (Γ,Π) ∈ Pµ. The corresponding reduced Hamiltonian vector field

XHµ(Γ,Π) = (Γ×XΘ,XΠ) ∈ T(Γ,Π)Pµ

must satisfy

ωPµ (Γ,Π) ((Γ×XΘ,XΠ), (Γ× δΘ, δΠ)) = DHµ(Γ,Π) · (Γ× δΘ, δΠ)

for all (Γ× δΘ, δΠ) ∈ T(Γ,Π)Pµ.

M. Fontaine — Hamiltonian reduction 21/24



Example: the Heavy Top

The reduced symplectic form on Pµ is

ωPµ (Γ,Π) ((Γ×XΘ,XΠ), (Γ× δΘ, δΠ)) = (Π×XΘ −XΠ) · δΘ + XΘ · δΠ

while the directional derivative of the reduced Hamiltonian Hµ in the
direction (Γ× δΘ, δΠ) ∈ T(Γ,Π)Pµ ' R3 × R3 is

DHµ(Γ,Π) · (Γ× δΘ, δΠ) = −mg`(Γ× e3) · δΘ + Ω · δΠ.

We find eventually the reduced Hamiltonian vector field

XHµ(Γ,Π) = (Γ×XΘ,XΠ) = (Γ×Ω,Π×Ω +mg`(Γ× e3)) .
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Example: the Heavy Top

The reduced equations of motion on Pµ are then given by{
Γ̇ = Γ×Ω

Π̇ = Π×Ω +mg`(Γ× e3)

where ‖ Γ ‖= 1 and Π · Γ = µ for Γ,Π ∈ R3.
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