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Let

f(x) = x3 + 1,

with the roots :

α1 = exp(i
π

3
), α2 = exp(iπ) = −1, α3 = exp(i

5π

3
).

One has :

α3
1 − α2 = exp(i

π

3
)3 + 1 = 0,

i.e the relation :

r = x31 − x2.
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Consider the permutation σ = (1)(2, 3). Then

σ.r = x31 − x3, and α3
1 − α3 6= 0.

Therefore if β = α3
1 = α2 how can one define

the action of σ on β ?

Either σ(β) = σ(α3
1) = α3

σ(1)
= α3

1;

or σ(β) = σ(α2) = ασ(2) = α3.

However, α3
1 6= α3.
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Instead of r, let us now choose special rela-

tions. From :

f(x) = x3 − (α1 + α2 + α3)x
2

+(α1α2 + α1α3 + α2α3)x

−α1α2α3

= x3 − 0 · x2 + 0 · x+ 1,

we have the symmetric relations among the

roots of f :

r1 = x1 + x2 + x3 − 0,

r2 = x1x2 + x1x3 + x2x3 − 0,

r3 = x1x2x3 + 1.
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They generate the ideal of symmetric relations

S = 〈r1, r2, r3〉

in Q[x1, x2, x3].

One can prove that :

S = {r ∈ Q[x1, x2, x3] | σ.r(α1, α2, α3) = 0, ∀σ ∈ S3}
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For the other relations (non symmetric ones),

consider the ideal :

M = {r ∈ Q[x1, x2, x3] | r(α1, α2, α3) = 0}

Look for :

G = {τ ∈ S3 | τ.r ∈ M,∀r ∈ M}

(i.e. if r is a relation, τ.r also is a relation).

We already know that σ = (1)(2,3) 6∈ G.
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G is a group, the Galois group of the triple

α = (α1, α2, α3).

With a different order of the roots, e.g.

β = σ.α = (α1, α3, α2)

we have the conjugate σ−1Gσ.
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We define the zeros Z(I) of an ideal I as the

set of triples on which all the elements of I

vanish. We have

Z(S) = {σ.α, | σ ∈ Sn} = Sn.α.

Therefore

Z(M) = {σ.α, | σ ∈ G} = G.α.

Let Id(E) be the ideal of polynomials with co-

efficients in Q vanishing in E. Clearly :

S = Id(Sn.α),

M = Id({α}) = Id(G.α).

Since G ⊆ Sn we have :

S ⊆ M.
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If M is known, G is also known.

Let be the surjective morphism

ψ : Q[x] −→ Q(α)
p(x) 7→ p(α) .

Its kernel is ker(ψ) = M.

Q[x]/M ≃ Q(α)

a field. Thus M is a maximal ideal.
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To calculate M

We know that

r = x31 − x2 6∈ S

(otherwise σ.r = x31 − x3 ∈ S ⊆ M) and that

r ∈ M,

because α3
1 − α2 = 0.

Therefore, G 6= S3.

Actually, f(x) = (x+ 1)(x2 − x+ 1).
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The roots satisfy the following relations :

α2
1 − α1 + 1 = 0,

α2 + 1 = 0,

α3 + α1 − 1 = 0.

Therefore, the polynomials

f1 = x21 − x1 + 1, f2 = x2 + 1, f3 = x3 + x1 − 1

belong to M.
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If the ideal I generated by f1, f2, f3 is smaller

than M, then

Z(I) = {(α1, α2, α3), (α3, α2, α1)} ⊃ Z(M)

and the system of equations obtained by set-

ting equal to zero the generators of M has only

one solution (α1, α2, α3). We have

Z(M) = {(α1, α2, α3)} = G.α

Then G is the identity group and

x1 − α1, x2 − α2, x3 − α3 ∈ M.

It is impossible because α1 6∈ Q. Then

M = I .
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G = {id, (1,3)},

Z(M) = {(α1, α2, α3), (α3, α2, α1)},

S3 = G+G(1,2) +G(2,3),

We have two other maximal ideals including

S3 :

(1.2).M = 〈x1+1, x22−x2+1, x3+x1−1〉, {id, (2,3)},

(2,3).M = 〈x21−x1+1, x2+x1−1, x3+1〉, {id, (1,2)}.

The ideal of symmetric relations is the inter-

section of 3 maximal ideals :

S = M∩ (1.2).M ∩ (2,3).M

Z(S) = Z(M) ∪ Z((1.2).M) ∪ Z((2, 3).M).
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Remark

The elements of G, id and τ = (1,3), yield the

field automorphisms :

Q(α1, α2, α3) −→ Q(α1, α2, α3)

induced by αi → αi and αi → ατ(i).
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The general case

Dramatis personae :

k a perfect field,

f(x) =
∏n
i=1(x− αi) ∈ k[x],

α = (α1, α2, . . . , αn) ∈ k̄

the ideal of symmetric relations generated by

the triangular system formed by the Cauchy

moduli of f :

S = {p ∈ k[x] | ∀σ ∈ Sn, p(σ.α) = 0};

= Id(Sn.α)

the ideal of α−relations :

M = Id({α}) = Id(G.α);

the Galois group of α over k :

G = {σ ∈ Sn | σ.M = M}
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Z(S) = Sn.α ⊇ Z(M) = G.α

Sn = Gτ1 +Gτ2 + · · · +Gτs

S = M1 ∩M2 . . . ∩Ms

where Mi = τ−1
i .M is the ideal of the τi.α−relations.
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Problem

S is known

How to determine M, i.e. how to find a tri-

angular system of polynomials that generate

M ?

k(α) ≃ k[x]/M

We have :

|G| = |Z(M)| = dimk(k[x]/M)

(since M is a radical ideal).
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Various methods for determining M

1st method Galois resolvent

This makes use of a polynomial :

V (x1, . . . , xn) = λ1x1+λ2x2+ · · ·+λnxn, λi ∈ k

only invariant under the identity and s.t. the

(absolute) resolvent of f by V :

RV (x) =
∏

σ∈Sn

(x− V (σ.α))

only has distinct roots.

Let v = V (α) ∈ k(α). Then :

Minv(x) is a factor of RV (x)

and

Minv(V ) belongs to M

since Mv(V (α)) = 0.
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Thus, by definition of G, one can show that

Minv(x) =
∏

σ∈G

(x− V (σ.α)).

We have :

i) degx(Minv(x)) = |G| = dimk(k(α)),

so that v is a primitive element of k(α) ;

ii) M = S + 〈Mink(V )〉
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The difficulties of this method are :

1. the degree of the Galois resolvent RV (x) is

n! ;

2. find a triangular system that generates M

starting from one of S and Mink(V ).
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2d method : G-resolvent

This makes use of a polynomial only invariant

under G :

Θ ∈ k[x]

and s.t. the resolvent of f by θ :

RΘ(x) =
∏

σ∈Sn/G

(x− Θ(σ.α))

only has distinct roots. Then :

a) θ = Θ(α) ∈ k ;

b) M = S + 〈Θ(x) − θ〉
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To prove θ ∈ k, set vi = V (σi.α), σi ∈ G, i =

1,2, . . . ,m, m = |G|.

As v1 is a primitive element of k(α) (like all

vi’s),

θ = Θ(α) = vm−1
1 +cm−1v

m−2
1 +· · ·+c0 = p(v1)

with ci ∈ k, and since σi.Θ = Θ, by definition

of G, we have :

θ = vm−1
i + cm−1v

m−2
i + · · · + c0 = p(vi)

i = 1,2, . . . ,m.
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Thus v1, . . . , vm are m distinct roots of the po-

lynomial p(x) − θ of degree m − 1. Il follows

p(x) ≡ 0, so that :

θ = c0 ∈ k.
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The difficulties of this method :

1. if |G| is small, the degree of the resolvent

[Sn : G] is still high, and it is difficult to deter-

mine M ;

2. G is not necessarily known.
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3d method : Factorization in extensions

(Tchebotarev–Yokoyama)

To simplify f is supposed to be irreducible.

Set f1(x) = f(x) and f1 = f(x1).

Let us consider the field tower :

k(α1) ⊂ k(α1, α2) ⊂ · · · ⊂ k(α)

First, factoring f1(x) in

k(α1) ≃ k[x1]/〈f1〉,

we obtain a polynomial f2(x1, x).
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Set f2 = f2(x1, x2). Factoring f2(x2, x) in

k(α1, α2) ≃ k[x1, x2]/〈f1, f2〉

we obtain a polynomial f3(x1, x2, x) and so on.

In the end we obtain n polynomials

f1, f2, . . . , fi(x1, . . . , xi), . . . , fn(x1, . . . , xn)

forming a triangular system of generators of

M.
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Difficulties of this method.

The more the order of the Galois group is big,

the more the factorizations are difficult. In fact,

the product of the degrees of the polynomials

fi equals the order of the group.
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4th method

Galois ideals

The idea is to split the problem by constructing

a chain of ideals :

S = I1 ⊂ I2 ⊂ . . . ⊂ M

such that

Z(M) ⊆ Z(I) ⊆ Z(S) = Sn.α

for all the ideals I of the chain.

Then :

Z(I) = L.α

where G ⊆ L ⊆ Sn.
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By definition, I = Id(L.α) is a Galois ideal

Problem :

Given I, find a Galois ideal J such that I ⊂ J.

For the sake of simplicity, let us assume that

L is a subgroup of Sn.

Let H < L and let Ψ ∈ k[x1, . . . , xn] only in-

variant under the elements of H, and s.t. the

resolvent

RΨ(x) =
∏

σ∈L/H

(x− Ψ(σ.α))

has distinct roots.
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RΨ(x) belongs to k[x] because G ⊂ L.

Remark

In order to determine RΨ(x) one cannot use

the fundamental theorem of symmetric func-

tions (i.e. the ideal S) any longer, but a trian-

gular system of generators of I (Aubry-Valibouze,

1999).

Let h(x) be a factor of RΨ(x). We construct a

new ideal :

J = I + 〈h(Ψ)〉

which contains I.
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Now consider the orbits of the action of G on

the left cosets of H in L. One of these orbits

O is s.t.

h(x) =
∏

σ|σH∈O

(x− Ψ(σ.α))

and the Galois group of h is given by the left

action of G on O .
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We have this result for each factor of the re-

solvent. Then, the degrees and Galois groups

of the factors of RΨ depend only on G and on

the testing group H.

We construct two matrices P (Arnaudiès-Valibouze,

1974) and G indexed by the subgroups of L in

rows and columns s.t. the element of the line

of H and column of G contains :

- for P : the cardinality of the orbits ;

- for G : the groups given by the action of G

on the orbits.
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The Galois group G can be determined only

using the degrees of the factors of the resol-

vents because the columns of the partition ma-

trix P are distinct.

Submatrix P1 of P for L = S4 and transitive

groups only :

S4 A4 D4 C4 V4

A4 2 12 2 2 12

D4 3 3 1,2 1,2 13

C4 6 6 2,4 12,4 23

V4 6 32 23 23 16

Invariants and degrees of the resolvents :

H RΨ Invariant Ψ
S4 1 1
A4 2

∏
i<j(xi − xj)

D4 3 x1x2 + x3x4

C4 6 c4 = x1x2
2 + x2x2

3 + x3x2
4 + x4x2

1
V4 6 (x1 − x2)(x3 − x4)

Submatrix P2 of P for L = D4 :

D4 C4

C4 2 12
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Let f = x4 + ax3 + bx + c ∈ Q[x] supposed

irreducible.

I1 := S

The Galois group G of f is transitive in S4.

C := {S4, A4, D4, C4, V4} s.t. G ∈ C.

H := A4 and RΨ = x2 − disc(f).

Assume d := disc(f) is not a square.

Then (see P1) C := {S4, D4, C4} and

I1 + 〈Ψ2 − d〉 = I1
H := D4 and RΨ is the dihedral resolvent.

Assume x− ψ is a simple factor of RΨ.

Then C := {D4, C4} and I2 := I1 + 〈Ψ − ψ〉.

H := C4, D4 = C4 + C4τ and

RΨ = (x− c4(α))(x− c4(τ.α)).

Suppose that ψ ∈ Q is a simple root.

Then (see P2) :

M := I2+ < Ψ − ψ > and G := C4.
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Factorisations in extensions : the first steps are

easy :

The ideal M of the previous example is com-

putable with only one factorization in Q(α1) :

f = (x−α1)(x+g2(α1))(x+g3(α1))(x+g4(α1)).

Then

M := 〈f(x1), x2+g2(x1), x3+g3(x1), x4+g4(x1)〉.

Therefore this method is nice for small groups.

When using Galois ideals, the last steps are

easy because the degrees of the initial mo-

nomials of generating triangular systems de-

crease.

How can one mix these methods ? (initial work :

Orange, Renault, Valibouze, 2003)
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Step 1 Factorize f in k(α1).

Step 2 Check the split table : the submatrix

of groups and partitions for H = S1×Sn−1 and

Stab(G,1) = G{1} possible Galois groups of f

over Q(α1) to get rid of possible Galois groups

G.

Split table in degree 4 for transitive groups G.

Deg G{1} G init Degree of M

14 S4
1 V+

4 C4 [4,13]

12,2 S2
1 , S2 D4 [4,2,12]

1,3 S1 , A3 A+
4 [4,3,12]

1,3 S1 , S3 S4 [4,3,2,1]
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Step 3 Compute a Galois ideal I by using the

Cauchy moduli of factors of f in Q(α1) and

use the split table to compute the set L s.t.

Z(I) = L.α.

For example, let :

f = (x− α1)(x+ g(α1))(x
2 + u(α1)x+ v(α1)).

Then G = D4 and

M = 〈f(x1), x2 + g(x1),

x23 + u(x1)x3 + v(x1), x4 + x3 + u(x1)〉.

37



Step 4 Compute J = {σ.I | σ ∈ H} for H the

bigger group included in L and containing G.

We have I ⊂ J with I = J iff L = H. This step

can be treated by pre-computations.

Step 5 Compute M by using the Galois ideal

method with I1 := J or continue to factorize

polynomials of J in extensions.

Note : If I is any Galois Ideal with Z(I) = L.α

then I ⊂ J = L.I with I = J iff L is a group

and Z(J) = H.α where H is a group (S. Orange,

2003).

Comments : The previous algorithm can be

pre-constructed. Then the polynomials that we

must compute (not with Cauchy moduli and

not in Step 4) can be knowed by advance if

the Galois group is knowed or partially kno-

wed. In that case this principal polynomials can

be computed by any method as the p-adic of

K. Yokoyama which computes directly M by

using its initial degree (private communication,

1999). This work has been realized by G. Re-

nault and K. Yokoyama (2004).
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A book is being written on this material, a

joint work of Prof. Mach̀ı and myself. We ex-

pect the book to be published before the Gulf

Stream ends its trip towards the North. This

fact, together with the beauty of Rome, partly

explains my visit to Italy.

This talk also includes some joint work with

Jean-Marie Arnaudiès, Philippe Aubry and my

PhD students Guenaël Renault and Sebastien

Orange.
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