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Real Root Isolation

Let A(X) be a polynomial with coefficients in R.

c d

A(X)

Fundamental Task
Computer Algebra, Computational Geometry, Quantifier Elimination etc.

A(X) is a square-free polynomial of degree n.
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A General Subdivision Algorithm for Real Root Isolation
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A General Subdivision Algorithm for Real Root Isolation

Estimate on number of real roots
• E(A,(c,d)) an upper bound on number of real roots of A(X) in (c,d).

• If E(A,(c,d)) = 1 then there is exactly one real root of A(X) in (c,d).
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Estimate on number of real roots
• E(A,(c,d)) an upper bound on number of real roots of A(X) in (c,d).

• If E(A,(c,d)) = 1 then there is exactly one real root of A(X) in (c,d).

Input: Polynomial A(X) ∈ R[X] and (c,d) ⊆ R.
Output: List of isolating intervals for real roots of A(X) in (c,d).

RootIsol(A,(c,d))

1 If E(A,(c,d)) = 0 return.

2 If E(A,(c,d)) = 1 output (c,d).

3 Partition (c,d) into two intervals I,J.

4 RootIsol(A, I) and RootIsol(A,J).
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A General Subdivision Algorithm for Real Root Isolation

Estimate on number of real roots
• E(A,(c,d)) an upper bound on number of real roots of A(X) in (c,d).

• If E(A,(c,d)) = 1 then there is exactly one real root of A(X) in (c,d).

Input: Polynomial A(X) ∈ R[X] and (c,d) ⊆ R.
Output: List of isolating intervals for real roots of A(X) in (c,d).

RootIsol(A,(c,d))

1 If E(A,(c,d)) = 0 return.

2 If E(A,(c,d)) = 1 output (c,d).

3 Partition (c,d) into two intervals I,J.

4 RootIsol(A, I) and RootIsol(A,J).

How to implement E(A,(c,d))?
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Two Varieties of Real Root Isolation Algorithm

Sturm Sequences

1 E(A,(c,d)) is computed from the Sturm sequence of A(X),A′(X).

2 E(A,(c,d)) = number of real roots of A(X) in (c,d).

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 4 / 28



Two Varieties of Real Root Isolation Algorithm

Sturm Sequences

1 E(A,(c,d)) is computed from the Sturm sequence of A(X),A′(X).

2 E(A,(c,d)) = number of real roots of A(X) in (c,d).

The Descartes’ Rule of Signs

1 E(A,(c,d)) = sign variation in the Bernstein coeffs. of A(X) w.r.t. (c,d).

2 E(A,(c,d)) ≥ number of real roots of A(X) in (c,d) by a +ve even
number.
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Two Varieties of Real Root Isolation Algorithm

Sturm Sequences

1 E(A,(c,d)) is computed from the Sturm sequence of A(X),A′(X).

2 E(A,(c,d)) = number of real roots of A(X) in (c,d).

The Descartes’ Rule of Signs

1 E(A,(c,d)) = sign variation in the Bernstein coeffs. of A(X) w.r.t. (c,d).

2 E(A,(c,d)) ≥ number of real roots of A(X) in (c,d) by a +ve even
number.

In practice, the second approach is more efficient than the first one.
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Vincent’s Theorem, 1836

Transform A(X) as follows:
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A(X) → XnA

(
a0 +

1
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)

a0 ∈ N≥0,
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Resulting polynomial has at most one sign variation in its coefficients.
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Vincent’s Theorem, 1836

Transform A(X) as follows:

A(X) → XnA

(
a0 +

1
X

)
→ (a1X +1)nA

(
a0 +

1

a1 + 1
X

)

→ (a1a2X +a1 +1)nA


a0 +

1

a1 + 1
a2+

1
X


 → ·· ·

a0 ∈ N≥0, a1 ∈ N>0, a2 ∈ N>0.

Resulting polynomial has at most one sign variation in its coefficients.

Let Var(A) be the number of sign variations in the coefficients of A(X).
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0.5

A(X)

31 2

We want to isolate the positive roots of A(X).
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0.5

A(X)

31 2

Construct AR(X) :=A(X +1), MR(X) :=X +1. Check if Var(AR) is 0 or 1.
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0.5

A(X)

31 2

Construct AL(X) :=(X +1)nA
(

1
X+1

)
, ML(X) :=(X +1)−1.
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0.5

A(X)

31 2

Check if Var(AL) is 0 or 1.
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0.5

A(X)

31 2

Construct ARR(X) :=AR(X +1) = A(X +2), MRR(X) :=X +2.
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0.5

A(X)

31 2

Check if Var(ARR) is 0 or 1.

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 6 / 28



M(X)=(X+2)/(X+1)

0.5

A(X)

31 2

Construct ARL(X) :=AR( 1
1+X ) = A(1+ 1

1+X ) and MRL(X) :=1+ 1
X+1 .
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M(X)=(X+2)/(X+1)

0.5

A(X)

31 2

Check Var(ARL).
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M(X)=1/(X+2) M(X)=(X+2)/(X+1)

0.5

A(X)

31 2

ALR(X) = AL(X +1) = (X +2)nA
(
1+ 1

2+X

)
, MLR(X) :=(X +2)−1
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M(X)=1/(X+2) M(X)=(X+2)/(X+1)

0.5

A(X)

31 2

Var(ALR) = 1, return MLR(0) = 1
2 , MLR(∞) = 0
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M(X)=1/(X+2) M(X)=(X+2)/(X+1)M(X)=(X+1)/(X+2)
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M(X)=1/(X+2) M(X)=(X+2)/(X+1)M(X)=(X+1)/(X+2)
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M(X)=1/(X+2) M(X)=(X+2)/(X+1)M(X)=(X+1)/(X+2)

0.5

A(X)

31 2

Continue recursively at each level
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M(X)=1/(X+2) M(X)=(X+2)/(X+1)M(X)=(X+1)/(X+2)

0.5

A(X)

31 2

This was Uspensky’s algorithm [Uspensky, 1948].
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Vincent’s Algorithm for Isolating Positive Roots

A(X)

31 2

We want to isolate the positive roots of A(X).
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Vincent’s Algorithm for Isolating Positive Roots

A(X)

31 2

Construct AR(X) :=A(X +1), MR(X) :=X +1 and check if Var(AR) is 0 or 1.
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Vincent’s Algorithm for Isolating Positive Roots

A(X)

31 2

Is Var(AR) < Var(A)?
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Vincent’s Algorithm for Isolating Positive Roots

A(X)

31 2

If Var(AR) = Var(A) then don’t construct AL(X).
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Vincent’s Algorithm for Isolating Positive Roots

A(X)

31 2

But proceed recursively from AR(X).
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Vincent’s Algorithm for Isolating Positive Roots

A(X)

31 2

If Var(AR) = Var(A) then don’t construct AL(X).

Budan-Fourier

#(roots in (0,1)) ≤ Var(A(X))−Var(A(X +1)) = Var(A)−Var(AR).
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Drawback of Vincent’s Algorithm
Exponential running time

• Consider the polynomial A(X) = (X−2L)(X−2L −1).
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Drawback of Vincent’s Algorithm
Exponential running time

• Consider the polynomial A(X) = (X−2L)(X−2L −1).

• At depth i on the right most path the polynomial is
A(X + i) = (X− (2L − i))(X− (2L +1− i)).
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A(X + i) = (X− (2L − i))(X− (2L +1− i)).

• To get the smallest positive root of A(X) in the unit interval i ≥ 2L.
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Two Solutions
• [Collins/Akritas,1976]: Bisect the interval at each recursion level.
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Idea: Use a lower bound on the smallest positive root.
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Drawback of Vincent’s Algorithm
Exponential running time

• Consider the polynomial A(X) = (X−2L)(X−2L −1).

• At depth i on the right most path the polynomial is
A(X + i) = (X− (2L − i))(X− (2L +1− i)).

• To get the smallest positive root of A(X) in the unit interval i ≥ 2L.

Two Solutions
• [Collins/Akritas,1976]: Bisect the interval at each recursion level.

• [Akritas,1978]: Can we do better than shifts by unit length?
Idea: Use a lower bound on the smallest positive root.

Advantages of Akritas’ approach
• Faster in practice.

• Utilises distribution of roots.

• Computes the continued fraction approximation of the roots.
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).

RootIsol(A,M)

• If Var(A) = 0 return.
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).

RootIsol(A,M)

• If Var(A) = 0 return.

• If Var(A) = 1 output the interval with end points M(0), M(∞).
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).

RootIsol(A,M)

• If Var(A) = 0 return.

• If Var(A) = 1 output the interval with end points M(0), M(∞).

• Compute a lower bound B on the positive roots of A(X).

• If B ≥ 1 then A(X) :=A(X +B), M(X) :=M(X +B).
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).

RootIsol(A,M)

• If Var(A) = 0 return.

• If Var(A) = 1 output the interval with end points M(0), M(∞).

• Compute a lower bound B on the positive roots of A(X).

• If B ≥ 1 then A(X) :=A(X +B), M(X) :=M(X +B).

• Compute AR(X) :=A(X +1) and MR(X) :=M(X +1).

• If Var(AR) < Var(A) then AL(X) :=(X +1)nA( 1
X+1), ML(X) :=M( 1

X+1).

• RootIsol(AR,MR) and RootIsol(AL,ML).
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Worst case bit-complexity of Akritas’ algorithm?
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Worst case bit-complexity of Akritas’ algorithm?
Two steps for getting the worst-case bounds

1 Bound the worst-case size of the recursion tree:
• number of inversion transformations, X → (X +1)−1 and
• number of Taylor shifts.

2 Bound the worst-case complexity of a node in the recursion tree.
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Worst case bit-complexity of Akritas’ algorithm?
Two steps for getting the worst-case bounds

1 Bound the worst-case size of the recursion tree:
• number of inversion transformations, X → (X +1)−1 and
• number of Taylor shifts.

2 Bound the worst-case complexity of a node in the recursion tree.

Akritas’ worst case bit-complexity

For A(X) ∈ Z[X], degree n, coefficients of bit-length L– Õ(n4L2):

• number of inversion transformations and Taylor shifts – Õ(n2L).

• worst case bit-complexity of a node using fast integer arithmetic –
Õ(n2L).
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Worst case bit-complexity of Akritas’ algorithm?
Two steps for getting the worst-case bounds

1 Bound the worst-case size of the recursion tree:
• number of inversion transformations, X → (X +1)−1 and
• number of Taylor shifts.

2 Bound the worst-case complexity of a node in the recursion tree.

Akritas’ worst case bit-complexity

For A(X) ∈ Z[X], degree n, coefficients of bit-length L– Õ(n4L2):

• number of inversion transformations and Taylor shifts – Õ(n2L).

• worst case bit-complexity of a node using fast integer arithmetic –
Õ(n2L).

Drawbacks
• Assumes floor of the smallest positive root can be computed in O(1).

• Assumes Taylor shifts don’t increase the bit-size.
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Worst case bit-complexity of Akritas’ algorithm?
Two steps for getting the worst-case bounds

1 Bound the worst-case size of the recursion tree:
• number of inversion transformations, X → (X +1)−1 and
• number of Taylor shifts.

2 Bound the worst-case complexity of a node in the recursion tree.

Akritas’ worst case bit-complexity

For A(X) ∈ Z[X], degree n, coefficients of bit-length L– Õ(n4L2):

• number of inversion transformations and Taylor shifts – Õ(n2L).

• worst case bit-complexity of a node using fast integer arithmetic –
Õ(n2L).

Our worst case bit-complexity

Worst case bit-complexity is Õ(n7L2):

• number of inversion transformations Õ(nL); no. of Taylor shifts Õ(n3L).

• worst case bit-complexity of a node using fast integer arithmetic –
Õ(n4L).
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Akritas’ Algorithm

RootIsol(A,M)

• If Var(A) = 0 return.

• If Var(A) = 1 output the interval with end points M(0), M(∞).

• Compute a lower bound B on the positive roots of A(X).

• If B ≥ 1 then A(X) :=A(X +B), M(X) :=M(X +B).

• Compute AR(X) :=A(X +1) and MR(X) :=M(X +1).

• If Var(AR) < Var(A) then AL(X) :=(X +1)nA( 1
X+1), ML(X) :=M( 1

X+1).

• RootIsol(AR,MR) and RootIsol(AL,ML).

• What are the transformations MR, ML?

• What is the relation between AR, AL and the input polynomial?
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The transformation associated with a node in the tree
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The transformation associated with a node in the tree

• Transformation associated with root is X.
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The transformation associated with a node in the tree

• Transformation associated with root is X.

• Do a Taylor shift X → X +a.
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The transformation associated with a node in the tree

• Transformation associated with root is X.

• Do a Taylor shift X → X +a.

• Then the transformation X → 1
1+X .
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The transformation associated with a node in the tree

• Transformation associated with root is X.

• Do a Taylor shift X → X +a.

• Then the transformation X → 1
1+X .

• Then a Taylor shift X → X +b0.
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The transformation associated with a node in the tree

• Transformation associated with root is X.

• Do a Taylor shift X → X +a.

• Then the transformation X → 1
1+X .

• Then a Taylor shift X → X +b0.

• Again a Taylor shift by X → X +b1.
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The transformation associated with a node in the tree

• Transformation associated with root is X.

• Do a Taylor shift X → X +a.

• Then the transformation X → 1
1+X .

• Then a Taylor shift X → X +b0.

• Again a Taylor shift by X → X +b1.

• Followed by X → 1
1+X .

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 12 / 28



The transformation associated with a node in the tree

• Transformation associated with root is X.

• Do a Taylor shift X → X +a.

• Then the transformation X → 1
1+X .

• Then a Taylor shift X → X +b0.

• Again a Taylor shift by X → X +b1.

• Followed by X → 1
1+X .

• Associated transformation is
a+ 1

1+b0+b1+
1

1+X
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The transformation associated with a node in the tree

• Transformation associated with root is X.

• Do a Taylor shift X → X +a.

• Then the transformation X → 1
1+X .

• Then a Taylor shift X → X +b0.

• Again a Taylor shift by X → X +b1.

• Followed by X → 1
1+X .

• Associated transformation is
a+ 1

1+b0+b1+
1

1+X

• Same as a+ 1
q+ 1

1+X
, q = 1+b0 +b1.
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The transformation associated with a node in the tree

• Transformation associated with root is X.

• Do a Taylor shift X → X +a.

• Then the transformation X → 1
1+X .

• Then a Taylor shift X → X +b0.

• Again a Taylor shift by X → X +b1.

• Followed by X → 1
1+X .

• Associated transformation is
a+ 1

1+b0+b1+
1

1+X

• Same as a+ 1
q+ 1

1+X
, q = 1+b0 +b1.

• Collapse consecutive Taylor shifts into one.
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The transformation associated with a node in the tree

• Transformation associated with root is X.

• Do a Taylor shift X → X +a.

• Then the transformation X → 1
1+X .

• Then a Taylor shift X → X +b0.

• Again a Taylor shift by X → X +b1.

• Followed by X → 1
1+X .

• Associated transformation is
a+ 1

1+b0+b1+
1

1+X

• Same as a+ 1
q+ 1

1+X
, q = 1+b0 +b1.

• Collapse consecutive Taylor shifts into one.

What is the transformation in general?
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The transformation associated with a node in the tree

q0 +
1

q1 + 1
q2+

1

...+ 1
qm+X

where

• m is the number of inversion transformations (X → 1
1+X ).

• q0 ≥ 0 the total amount of Taylor shifts to the first inversion
transformation.

• qi ≥ 1, for i = 1, . . . ,m−1, the total amount of Taylor shifts between i-th
and i+1-th inversion transformation; if there are no Taylor shifts qi = 1.
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The transformation associated with a node in the tree

q0 +
1

q1 + 1
q2+

1

...+ 1
qm+X

where

• m is the number of inversion transformations (X → 1
1+X ).

• q0 ≥ 0 the total amount of Taylor shifts to the first inversion
transformation.

• qi ≥ 1, for i = 1, . . . ,m−1, the total amount of Taylor shifts between i-th
and i+1-th inversion transformation; if there are no Taylor shifts qi = 1.

Let ith quotient Pi
Qi

be the finite continued fraction q0 + 1
q1+

1

...+ 1
qi

.

Then Pi = qiPi−1 +Pi−2 and Qi = qiQi−1 +Qi−2.
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The transformation associated with a node in the tree

q0 +
1

q1 + 1
q2+

1

...+ 1
qm+X

=
PmX +Pm−1

QmX +Qm−1
.

where

• m is the number of inversion transformations (X → 1
1+X ).

• q0 ≥ 0 the total amount of Taylor shifts to the first inversion
transformation.

• qi ≥ 1, for i = 1, . . . ,m−1, the total amount of Taylor shifts between i-th
and i+1-th inversion transformation; if there are no Taylor shifts qi = 1.

Let ith quotient Pi
Qi

be the finite continued fraction q0 + 1
q1+

1

...+ 1
qi

.

Then Pi = qiPi−1 +Pi−2 and Qi = qiQi−1 +Qi−2.
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Two additional features associated with a node in the tree

The transformation associated with a node
Let m be the number of inversion transformations along the path and

M(X) := PmX+Pm−1
QmX+Qm−1

.
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Two additional features associated with a node in the tree

The transformation associated with a node
Let m be the number of inversion transformations along the path and

M(X) := PmX+Pm−1
QmX+Qm−1

.

The two features
• Polynomial Am(X) :=(QmX +Qm−1)

nA(M(X)).
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Two additional features associated with a node in the tree

The transformation associated with a node
Let m be the number of inversion transformations along the path and

M(X) := PmX+Pm−1
QmX+Qm−1

.

The two features
• Polynomial Am(X) :=(QmX +Qm−1)

nA(M(X)).

• Interval Im that has end-points M(0) = Pm−1
Qm−1

, M(∞) = Pm
Qm

.

Note: Width of Im is
∣∣∣ Pm

Qm
− Pm−1

Qm−1

∣∣∣= (QmQm−1)
−1.
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Two additional features associated with a node in the tree

The transformation associated with a node
Let m be the number of inversion transformations along the path and

M(X) := PmX+Pm−1
QmX+Qm−1

.

The two features
• Polynomial Am(X) :=(QmX +Qm−1)

nA(M(X)).

• Interval Im that has end-points M(0) = Pm−1
Qm−1

, M(∞) = Pm
Qm

.

Note: Width of Im is
∣∣∣ Pm

Qm
− Pm−1

Qm−1

∣∣∣= (QmQm−1)
−1.

The positive roots of Am(X) ⇔ Roots of A(X) in Im.
Var(Am) = #(number of roots of A(X) in Im) + even number.
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Two additional features associated with a node in the tree

The transformation associated with a node
Let m be the number of inversion transformations along the path and

M(X) := PmX+Pm−1
QmX+Qm−1

.

The two features
• Polynomial Am(X) :=(QmX +Qm−1)

nA(M(X)).

• Interval Im that has end-points M(0) = Pm−1
Qm−1

, M(∞) = Pm
Qm

.

Note: Width of Im is
∣∣∣ Pm

Qm
− Pm−1

Qm−1

∣∣∣= (QmQm−1)
−1.

The positive roots of Am(X) ⇔ Roots of A(X) in Im.
Var(Am) = #(number of roots of A(X) in Im) + even number.

When does the algorithm terminate? When is Var(Am) ≤ 1?
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Termination Criterion: Two-Circle Theorem

mI
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Termination Criterion: Two-Circle Theorem

mI
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Termination Criterion: Two-Circle Theorem

mI

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. Im contains a
single root of A(X) then Var(Am) = 1;
if no roots of A(X) then Var(Am) = 0.
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Termination Criterion: Two-Circle Theorem

mI

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. Im contains a
single root of A(X) then Var(Am) = 1;
if no roots of A(X) then Var(Am) = 0.

Contrapositive

If Var(Am) ≥ 2, then the two-circles figure in C

w.r.t. interval Im contains two roots α ,β of A(X).
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Termination Criterion: Two-Circle Theorem

mI

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. Im contains a
single root of A(X) then Var(Am) = 1;
if no roots of A(X) then Var(Am) = 0.

Contrapositive

If Var(Am) ≥ 2, then the two-circles figure in C

w.r.t. interval Im contains two roots α ,β of A(X).

Corollary

We can choose a pair α ,β of roots inside the two-circles such that
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Termination Criterion: Two-Circle Theorem

mI

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. Im contains a
single root of A(X) then Var(Am) = 1;
if no roots of A(X) then Var(Am) = 0.

Contrapositive

If Var(Am) ≥ 2, then the two-circles figure in C

w.r.t. interval Im contains two roots α ,β of A(X).

Corollary

We can choose a pair α ,β of roots inside the two-circles such that

|β −α | <
√

3|Im|
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Termination Criterion: Two-Circle Theorem

mI

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. Im contains a
single root of A(X) then Var(Am) = 1;
if no roots of A(X) then Var(Am) = 0.

Contrapositive

If Var(Am) ≥ 2, then the two-circles figure in C

w.r.t. interval Im contains two roots α ,β of A(X).

Corollary

We can choose a pair α ,β of roots inside the two-circles such that

|β −α | <
√

3|Im| , but |Im| =
∣∣∣ Pm

Qm
− Pm−1

Qm−1

∣∣∣= 1
QmQm−1

. Thus
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Termination Criterion: Two-Circle Theorem

mI

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. Im contains a
single root of A(X) then Var(Am) = 1;
if no roots of A(X) then Var(Am) = 0.

Contrapositive

If Var(Am) ≥ 2, then the two-circles figure in C

w.r.t. interval Im contains two roots α ,β of A(X).

Corollary

We can choose a pair α ,β of roots inside the two-circles such that

|β −α | <
√

3|Im| , but |Im| =
∣∣∣ Pm

Qm
− Pm−1

Qm−1

∣∣∣= 1
QmQm−1

. Thus

If Var(Am) ≥ 2 then 1
QmQm−1

> |β −α |/
√

3.

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 14 / 28



Number of Inversion Transformations along a path to a leaf

J

J

α
J β

1 A path in the recursion tree of
RootIsol(A,X), from the root to a parent J
of two leaves. Let m be the number of
inversion transformations along the path.
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Number of Inversion Transformations along a path to a leaf

J

J

α
J β

1 A path in the recursion tree of
RootIsol(A,X), from the root to a parent J
of two leaves. Let m be the number of
inversion transformations along the path.

2 Let Im be the interval associated with J.

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 15 / 28



Number of Inversion Transformations along a path to a leaf

J

J

α
J β

1 A path in the recursion tree of
RootIsol(A,X), from the root to a parent J
of two leaves. Let m be the number of
inversion transformations along the path.

2 Let Im be the interval associated with J.

3 Since Var(Am) ≥ 2, there is a pair of roots
(αJ,βJ) of A(X) such that
|Im| = 1

QmQm−1
≥ |βJ −αJ|/

√
3.
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Number of Inversion Transformations along a path to a leaf

J

J

α
J β

1 A path in the recursion tree of
RootIsol(A,X), from the root to a parent J
of two leaves. Let m be the number of
inversion transformations along the path.

2 Let Im be the interval associated with J.

3 Since Var(Am) ≥ 2, there is a pair of roots
(αJ,βJ) of A(X) such that
|Im| = 1

QmQm−1
≥ |βJ −αJ|/

√
3.

4 But Qm = qmQm−1 +Qm−2 ≥
Qm−1 +Qm−2 ≥ Fm ≥ φ m−1.
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Number of Inversion Transformations along a path to a leaf

J

J

α
J β

1 A path in the recursion tree of
RootIsol(A,X), from the root to a parent J
of two leaves. Let m be the number of
inversion transformations along the path.

2 Let Im be the interval associated with J.

3 Since Var(Am) ≥ 2, there is a pair of roots
(αJ,βJ) of A(X) such that
|Im| = 1

QmQm−1
≥ |βJ −αJ|/

√
3.

4 But Qm = qmQm−1 +Qm−2 ≥
Qm−1 +Qm−2 ≥ Fm ≥ φ m−1.

5 Thus m ≤ 2− logφ |βJ −αJ|.
6 This was shown by Uspensky and

Ostrowski.
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Number of Inversion Transformations along a path to a leaf

J

J

α
J β

1 A path in the recursion tree of
RootIsol(A,X), from the root to a parent J
of two leaves. Let m be the number of
inversion transformations along the path.

2 Let Im be the interval associated with J.

3 Since Var(Am) ≥ 2, there is a pair of roots
(αJ,βJ) of A(X) such that
|Im| = 1

QmQm−1
≥ |βJ −αJ|/

√
3.

4 But Qm = qmQm−1 +Qm−2 ≥
Qm−1 +Qm−2 ≥ Fm ≥ φ m−1.

5 Thus m ≤ 2− logφ |βJ −αJ|.
6 This was shown by Uspensky and

Ostrowski.
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Proposition

The total number of inversion transformations in the tree are
bounded by

∑
J

(2− logφ |βJ −αJ|).



Akritas’ Algorithm

RootIsol(A,M)

• If Var(A) = 0 return.

• If Var(A) = 1 output the interval with end points M(0), M(∞).

• Compute a lower bound B on the positive roots of A(X).

• If B ≥ 1 then A(X) :=A(X +B), M(X) :=M(X +B).

• Compute AR(X) :=A(X +1) and MR(X) :=M(X +1).

• If Var(AR) < Var(A) then AL(X) :=(X +1)nA( 1
X+1), ML(X) :=M( 1

X+1).

• RootIsol(AR,MR) and RootIsol(AL,ML).
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Akritas’ Algorithm

RootIsol(A,M)

• If Var(A) = 0 return.

• If Var(A) = 1 output the interval with end points M(0), M(∞).

• Compute a lower bound B on the positive roots of A(X).

• If B ≥ 1 then A(X) :=A(X +B), M(X) :=M(X +B).

• Compute AR(X) :=A(X +1) and MR(X) :=M(X +1).

• If Var(AR) < Var(A) then AL(X) :=(X +1)nA( 1
X+1), ML(X) :=M( 1

X+1).

• RootIsol(AR,MR) and RootIsol(AL,ML).

How do we compute a lower bound on positive roots of a polynomial?
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Lower Bound on the smallest positive root
One Approach

• Roots of XnA(1/X) are inverse of the roots of A(X).

• Compute an upper bound U on the largest positive root of XnA(1/X).

• 1/U is a lower bound on the smallest positive root of A(X).
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Lower Bound on the smallest positive root
One Approach

• Roots of XnA(1/X) are inverse of the roots of A(X).

• Compute an upper bound U on the largest positive root of XnA(1/X).

• 1/U is a lower bound on the smallest positive root of A(X).

Upper bound on positive roots, [Hong,98]

B(X) = ∑n
i=0 biXi, bn > 0. U(B) :=2maxbi<0 minbj>0,j>i

{∣∣∣bi
bj

∣∣∣
1/(j−i)

}
.
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Lower Bound on the smallest positive root
One Approach

• Roots of XnA(1/X) are inverse of the roots of A(X).

• Compute an upper bound U on the largest positive root of XnA(1/X).

• 1/U is a lower bound on the smallest positive root of A(X).

Upper bound on positive roots, [Hong,98]

B(X) = ∑n
i=0 biXi, bn > 0. U(B) :=2maxbi<0 minbj>0,j>i

{∣∣∣bi
bj

∣∣∣
1/(j−i)

}
.

Tight lower bound

Define PLB(A) := 1
U(XnA(1/X)) .

Suppose A(X) has only real roots in ℜ(z) > 0 and α is the smallest positive
root of A(X). Then

α
2n ≤ PLB(A) < α .
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root α0)?
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root α0)?

α0β0
γ

0

A(X)
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root α0)?

0

α
0

2n

a =PLB(A)

α0β0
γ

0

A(X)

Since PLB(A) is a lower bound on α0 we have |α0|
2n ≤ PLB(A).
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root α0)?

β = β − a
1 10 0γ = γ − a

1 0
a0 0α = α − 0

0
A (X)=A(X+a )

1

Shift A(X) by PLB(A) to obtain A1(X).
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root α0)?

β = β − a
1 10 0γ = γ − a

1 0
a0 0α = α − 0

a = PLB(A )
1

1

2n

α

1

0
A (X)=A(X+a )

1

Suppose α1 > 1. Then α1
2n ≤ PLB(A1).
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root α0)?

a11α = α − a
21a

2β = β − 1 1γ = γ − 2 1

12
A (X)=A (X+a )

1

Shift A1(X) by a1 to get A2(X).
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root α0)?

a11α = α − a
21a

2β = β − 1 1γ = γ − 2 1

a = PLB(A )
2

2n
2

α

2

12
A (X)=A (X+a )

1

Again suppose α2 > 1. Then α2
2n ≤ PLB(A2).
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root α0)?

2 2 23 2α = α − a
3

a a
3 2γ = γ − 

2
β = β − 

A (X)=A (X+a )23 2

This continues until αi < 1, i.e., we compute the floor of α0.
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root α0)?

2 2 23 2α = α − a
3

a a
3 2γ = γ − 

2
β = β − 

A (X)=A (X+a )23 2

This continues until αi < 1, i.e., we compute the floor of α0.

• αi = αi−1 −PLB(Ai−1) ≤ αi−1(1− 1
2n).
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root α0)?

2 2 23 2α = α − a
3

a a
3 2γ = γ − 

2
β = β − 

A (X)=A (X+a )23 2

This continues until αi < 1, i.e., we compute the floor of α0.

• αi = αi−1 −PLB(Ai−1) ≤ αi−1(1− 1
2n).

• Thus αi ≤ α0(1− 1
2n)i.
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root α0)?

2 2 23 2α = α − a
3

a a
3 2γ = γ − 

2
β = β − 

A (X)=A (X+a )23 2

This continues until αi < 1, i.e., we compute the floor of α0.

• αi = αi−1 −PLB(Ai−1) ≤ αi−1(1− 1
2n).

• Thus αi ≤ α0(1− 1
2n)i.

• Need at most 2n logα0 Taylor shifts to compute floor of α0.
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Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots.

J

α βJ J

1 Consider a path in the
recursion tree of
RootIsol(A,M(X)),
M(X) = X, from the root to
a parent J of two leaves.

2 Let αJ,βJ be the roots
associated with the leaves.

3 m be the number of
inversion transformations
along the path.
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Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots.

J

α βJ J

Consider the i-th and i+1-th
inversion transformation.

Ai(X) be the polynomial
associated with the blue node.
a1, . . . ,aℓ be its positive real
roots.

#(Taylor shift) from i-th to
i+1-th transformation is
bounded by
2n(loga1 + · · ·+ logaℓ) ≤
2n2 logaℓ ≤ 2n2 logqi.
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Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots.

J

α βJ J

Ai(X) be the polynomial
associated with the blue node.
a1, . . . ,aℓ be its positive real
roots.

#(Taylor shift) from i-th to
i+1-th transformation is
bounded by
2n(loga1 + · · ·+ logaℓ) ≤
2n2 logaℓ ≤ 2n2 logqi.

Total number of Taylor shifts on
the path to J is n2O(∑m

i=1 logqi).
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Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots.

J

α βJ J

Total number of Taylor shifts on
the path to J is n2O(∑m

i=1 logqi).

We can show

∑m
i=1 logqi = O(log |αJ −βJ|−1).

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 19 / 28



Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots.

J

α βJ J

Total number of Taylor shifts on
the path to J is n2O(∑m

i=1 logqi).

We can show

∑m
i=1 logqi = O(log |αJ −βJ|−1).

Total number of Taylor shifts on
the path to J is
n2O(log |αJ −βJ|−1).

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 19 / 28



Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots.

J

α βJ J

Total number of Taylor shifts on
the path to J is n2O(∑m

i=1 logqi).

We can show

∑m
i=1 logqi = O(log |αJ −βJ|−1).

Total number of Taylor shifts on
the path to J is
n2O(log |αJ −βJ|−1).

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 19 / 28

Proposition

The total number of Taylor shifts in the tree is bounded by

n2O(∑
J

log|αJ −βJ|−1).

Lower bound on ∏J|αJ −βJ|?



The Davenport–Mahler bound
Theorem (Davenport–Mahler [Dav., 1985] [Du/Sharma/Yap, 2005])

Consider a polynomial A(X) ∈ C[X] of degree n.
Let G = (V,E) be a DAG whose vertices are the roots of A(X). If

(i) (α ,β ) ∈ E =⇒ |α | ≤ |β |, and

(ii) in-degree of all vertices is at most one.

then
∏

(α,β )∈E

|β −α | ≥
√
|discr(A)|

M(A)n−1 ·2−O(n logn),

where, if ϑi are roots of A(X),

discr(A) := a2n−2
n ∏

i>j

(ϑi −ϑj)
2 and M(A) := |an|∏

i

max{1, |ϑi|}.
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The Davenport–Mahler bound
Theorem (Davenport–Mahler [Dav., 1985] [Du/Sharma/Yap, 2005])

Consider a polynomial A(X) ∈ C[X] of degree n.
Let G = (V,E) be a DAG whose vertices are the roots of A(X). If

(i) (α ,β ) ∈ E =⇒ |α | ≤ |β |, and

(ii) in-degree of all vertices is at most one.

then
∏

(α,β )∈E

|β −α | ≥
√
|discr(A)|

M(A)n−1 ·2−O(n logn),

where, if ϑi are roots of A(X),

discr(A) := a2n−2
n ∏

i>j

(ϑi −ϑj)
2 and M(A) := |an|∏

i

max{1, |ϑi|}.

Corollary

If A(X) ∈ Z[X] is square-free, has degree n, and coefficient bit-length L then

∏(α,β )∈E|β −α | = 2−O(nL).
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Bound on the Size of the Recursion Tree

Assume A(X) has degree n, coefficient bit-length L and only real roots.
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Bound on the Size of the Recursion Tree

Assume A(X) has degree n, coefficient bit-length L and only real roots.

Number of inversion transformations

∑J(2− log|βJ −αJ|) = Õ(nL).
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Bound on the Size of the Recursion Tree

Assume A(X) has degree n, coefficient bit-length L and only real roots.

Number of inversion transformations

∑J(2− log|βJ −αJ|) = Õ(nL).

Number of Taylor shifts

n2 ∑J log|βJ −αJ|−1 = Õ(n3L)
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Bound on the Size of the Recursion Tree

Assume A(X) has degree n, coefficient bit-length L and only real roots.

Number of inversion transformations

∑J(2− log|βJ −αJ|) = Õ(nL).

Number of Taylor shifts

n2 ∑J log|βJ −αJ|−1 = Õ(n3L)

Theorem

Let A(X) be a square-free polynomial of degree n, and integer coefficients of
bit-length L. The size of the recursion tree of Akritas’ algorithm run on A(X) is
bounded by

• Õ(n3L), if A(X) has only real roots
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Bound on the Size of the Recursion Tree

Assume A(X) has degree n, coefficient bit-length L and only real roots.

Number of inversion transformations

∑J(2− log|βJ −αJ|) = Õ(nL).

Number of Taylor shifts

n2 ∑J log|βJ −αJ|−1 = Õ(n3L)

Theorem

Let A(X) be a square-free polynomial of degree n, and integer coefficients of
bit-length L. The size of the recursion tree of Akritas’ algorithm run on A(X) is
bounded by

• Õ(n3L), if A(X) has only real roots

• The result holds in general!
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Worst case bit-complexity of a node in the tree

• Let m be the number of inversion transformations along a path.
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Worst case bit-complexity of a node in the tree

• Let m be the number of inversion transformations along a path.

• Let the total amount of Taylor shift from i-th to i+1-th inversion
transformation be qi, i = 0, . . . ,m.
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Worst case bit-complexity of a node in the tree

• Let m be the number of inversion transformations along a path.

• Let the total amount of Taylor shift from i-th to i+1-th inversion
transformation be qi, i = 0, . . . ,m.

• Cost of computing A(X +qi) using classical Taylor shifts?
1 Total number of operations (Taylor shifts & Hong’s bound) O(n2).
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Worst case bit-complexity of a node in the tree

• Let m be the number of inversion transformations along a path.

• Let the total amount of Taylor shift from i-th to i+1-th inversion
transformation be qi, i = 0, . . . ,m.
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2 Bit-size of the quantities added L+n logq0 + · · ·+n logqi.
3 Cost is O(n2M(L+n logq0 + · · ·+n logqi)); M(p) is the cost of

multiplying two p-bit integers.

• We can show ∑m
i=0 logqi = Õ(nL).

• Thus worst-case complexity of a node assuming fast integer arithmetic is
Õ(n4L).
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Worst case bit-complexity of a node in the tree

• Let m be the number of inversion transformations along a path.

• Let the total amount of Taylor shift from i-th to i+1-th inversion
transformation be qi, i = 0, . . . ,m.

• Cost of computing A(X +qi) using classical Taylor shifts?
1 Total number of operations (Taylor shifts & Hong’s bound) O(n2).
2 Bit-size of the quantities added L+n logq0 + · · ·+n logqi.
3 Cost is O(n2M(L+n logq0 + · · ·+n logqi)); M(p) is the cost of

multiplying two p-bit integers.

• We can show ∑m
i=0 logqi = Õ(nL).

• Thus worst-case complexity of a node assuming fast integer arithmetic is
Õ(n4L).

Cannot use asymptotically fast Taylor shifts [vzGathen/Gerhard, 1997].
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Worst case bit-complexity of a node in the tree

• Let m be the number of inversion transformations along a path.

• Let the total amount of Taylor shift from i-th to i+1-th inversion
transformation be qi, i = 0, . . . ,m.

• Cost of computing A(X +qi) using classical Taylor shifts?
1 Total number of operations (Taylor shifts & Hong’s bound) O(n2).
2 Bit-size of the quantities added L+n logq0 + · · ·+n logqi.
3 Cost is O(n2M(L+n logq0 + · · ·+n logqi)); M(p) is the cost of

multiplying two p-bit integers.

• We can show ∑m
i=0 logqi = Õ(nL).

• Thus worst-case complexity of a node assuming fast integer arithmetic is
Õ(n4L).

Cannot use asymptotically fast Taylor shifts [vzGathen/Gerhard, 1997].

Combined with our worst-case bound Õ(n3L) on tree-size.
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Main Result

Theorem

For a square-free integer polynomial of degree n, and coefficients of
bit-length L, the worst-case running time of Akritas’ algorithm is
bounded by Õ(n7L2).
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Expected Complexity, [Tsigaridas/Emiris, 2006]

The size of the tree
• Assumes floor of the smallest positive root can be computed in O(1).

• Number of Taylor shifts ∼ Number of inversion transformations.

• So the size of the tree is Õ(nL).
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• Number of Taylor shifts ∼ Number of inversion transformations.

• So the size of the tree is Õ(nL).

Expected complexity of a node

• From Khinchin’s result we know E[∑i
j=0 logqj] = i+1 = Õ(nL).

• Expected cost at a node is O(n2M(L+n∑i
j=0 bi)) = Õ(n4L).
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Expected Complexity, [Tsigaridas/Emiris, 2006]

The size of the tree
• Assumes floor of the smallest positive root can be computed in O(1).

• Number of Taylor shifts ∼ Number of inversion transformations.

• So the size of the tree is Õ(nL).

Expected complexity of a node

• From Khinchin’s result we know E[∑i
j=0 logqj] = i+1 = Õ(nL).

• Expected cost at a node is O(n2M(L+n∑i
j=0 bi)) = Õ(n4L).

Theorem
Expected running time of Akritas’ algorithm:

• Õ(n5L2) using classical Taylor shifts with fast integer arithmetic,

• Õ(n4L2) using asymptotically fast Taylor shifts.
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Comparison with the Descartes method

Input: A(X) ∈ R[X] of degree n, and (c,d).
Output: Isolating intervals for roots of A(X) in (c,d).
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Comparison with the Descartes method

Input: A(X) ∈ R[X] of degree n, and (c,d).
Output: Isolating intervals for roots of A(X) in (c,d).

Estimate on the number of roots, E(A,(c,d))

Let A(X) = ∑n
i=0 ai

(n
i

)
(X− c)i(d−X)n−i(d− c)−n.

E(A,(c,d)) := #(sign variations in (an,an−1, . . . ,a0)).

• If E(A,(c,d)) = 0 then A(X) has no roots in (c,d).

• If E(A,(c,d)) = 1 then A(X) has one root in (c,d).
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• If E(A,(c,d)) = 1 then A(X) has one root in (c,d).

Descartes(A,(c,d))

• If E(A,(c,d)) = 0 return.

• If E(A,(c,d)) = 1 output (c,d).
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• If E(A,(c,d)) = 0 return.

• If E(A,(c,d)) = 1 output (c,d).

• If m :=(c+d)/2 is a root of A(X) output [m,m].

• Call Descartes(A,(c,m)) and Descartes(A,(m,d)).
Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 25 / 28



Comparison with the Descartes method

Input: A(X) ∈ R[X] of degree n, and (c,d).
Output: Isolating intervals for roots of A(X) in (c,d).

Estimate on the number of roots, E(A,(c,d))

Let A(X) = ∑n
i=0 ai

(n
i

)
(X− c)i(d−X)n−i(d− c)−n.

E(A,(c,d)) := #(sign variations in (an,an−1, . . . ,a0)).

• If E(A,(c,d)) = 0 then A(X) has no roots in (c,d).

• If E(A,(c,d)) = 1 then A(X) has one root in (c,d).

Descartes(A,(c,d))

• If E(A,(c,d)) = 0 return.

• If E(A,(c,d)) = 1 output (c,d).

• If m :=(c+d)/2 is a root of A(X) output [m,m].

• Call Descartes(A,(c,m)) and Descartes(A,(m,d)).
Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 25 / 28



Comparison with the Descartes method

Descartes Akritas

Complexity Õ(n5L2) Õ(n7L2)

Size of the tree Õ(nL) Õ(n3L)
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Descartes Akritas

Complexity Õ(n5L2) Õ(n7L2)

Size of the tree Õ(nL) Õ(n3L)

Reasons
• Width of the interval doesn’t necessarily go down by half at each

recursion step.

• Lower bound is off by a factor of n ( ).
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Comparison with the Descartes method

Descartes Akritas

Complexity Õ(n5L2) Õ(n7L2)

Size of the tree Õ(nL) Õ(n3L)

Reasons
• Width of the interval doesn’t necessarily go down by half at each

recursion step.

• Lower bound is off by a factor of n ( ).

But...

• Degree 100 Mignotte’s polynomials (Xn − (aX−1)2):
[Emiris/Tsigaridas, ’06]: Descartes 7.83sec. and Akritas 0.02sec.

• Available in Mathematica.

• [Collins/Akritas, 1976]: O(n6L2); [Johnson, 1998]: O(n4L2).

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 25 / 28



Possible ways to improve the complexity

1 Derive tight bounds on largest positive root of a polynomial in O(n)
operations. Bounds by [Kioustelidis, 1986; Ştefănescu, 2005] are known
to be not tight. A recent bound by Akritas et al. might help.
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operations. Bounds by [Kioustelidis, 1986; Ştefănescu, 2005] are known
to be not tight. A recent bound by Akritas et al. might help.

2 Instead of using Horner’s method for computing A(X +b), scale by b and
shift by one.
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Possible ways to improve the complexity

1 Derive tight bounds on largest positive root of a polynomial in O(n)
operations. Bounds by [Kioustelidis, 1986; Ştefănescu, 2005] are known
to be not tight. A recent bound by Akritas et al. might help.

2 Instead of using Horner’s method for computing A(X +b), scale by b and
shift by one.

Open question

For Mignotte’s polynomial Xn −2(aX−1)2, a ∈ N, the size of the recursion
tree is O(loga) using Zassenhaus’ bound
(the Descartes method has recursion tree size Ω(n loga)).
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Summary

Main Result

For a square-free polynomial A(X), degree n, and coefficient bit-length L:

1 Worst case bit-complexity of Akritas’ algorithm is Õ(n7L2).
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1 Worst case bit-complexity of Akritas’ algorithm is Õ(n7L2).

2 Worst case number of Taylor shifts – Õ(n3L).

3 Using a bound by Hong to compute the floor of the smallest positive root
(instead of assuming that it can be done in constant time).
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2 Worst case number of Taylor shifts – Õ(n3L).

3 Using a bound by Hong to compute the floor of the smallest positive root
(instead of assuming that it can be done in constant time).

4 Using Davenport’s bound to amortize the bit-size of continued fractions
(instead of using Khinchin’s result).
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Summary

Main Result

For a square-free polynomial A(X), degree n, and coefficient bit-length L:

1 Worst case bit-complexity of Akritas’ algorithm is Õ(n7L2).

2 Worst case number of Taylor shifts – Õ(n3L).

3 Using a bound by Hong to compute the floor of the smallest positive root
(instead of assuming that it can be done in constant time).

4 Using Davenport’s bound to amortize the bit-size of continued fractions
(instead of using Khinchin’s result).

Paper is available from http://www.cs.nyu.edu/sharma/pap/.
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Merci!

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation – Continued Fractions 28 / 28


