Complexity of Real Root Isolation Using Continued Fractions

Vikram Sharma

Project GALAAD INRIA, Sophia-Antipolis

Fundamental Task

Computer Algebra, Computational Geometry, Quantifier Elimination etc.

Fundamental Task

Computer Algebra, Computational Geometry, Quantifier Elimination etc.

A(X) is a square-free polynomial of degree n.

Estimate on number of real roots

- E(A, (c, d)) an *upper bound* on number of real roots of A(X) in (c, d).
- If E(A, (c, d)) = 1 then there is exactly one real root of A(X) in (c, d).

Estimate on number of real roots

- E(A, (c, d)) an *upper bound* on number of real roots of A(X) in (c, d).
- If E(A, (c, d)) = 1 then there is exactly one real root of A(X) in (c, d).

Input: Polynomial $A(X) \in \mathbb{R}[X]$ and $(c,d) \subseteq \mathbb{R}$. Output: List of isolating intervals for real roots of A(X) in (c,d).

Estimate on number of real roots

- E(A, (c, d)) an *upper bound* on number of real roots of A(X) in (c, d).
- If E(A, (c, d)) = 1 then there is exactly one real root of A(X) in (c, d).

Input: Polynomial $A(X) \in \mathbb{R}[X]$ and $(c,d) \subseteq \mathbb{R}$. Output: List of isolating intervals for real roots of A(X) in (c,d).

RootIsol(A, (c, d))

- **1** If E(A, (c, d)) = 0 return.
- **2** If E(A, (c, d)) = 1 output (c, d).
- **3** Partition (c,d) into two intervals I,J.
- 4 RootIsol(A, I) and RootIsol(A, J).

Estimate on number of real roots

- E(A, (c, d)) an *upper bound* on number of real roots of A(X) in (c, d).
- If E(A, (c, d)) = 1 then there is exactly one real root of A(X) in (c, d).

Input: Polynomial $A(X) \in \mathbb{R}[X]$ and $(c,d) \subseteq \mathbb{R}$. Output: List of isolating intervals for real roots of A(X) in (c,d).

RootIsol(A, (c, d))

- **1** If E(A, (c, d)) = 0 return.
- **2** If E(A, (c, d)) = 1 output (c, d).
- **3** Partition (c,d) into two intervals I,J.
- 4 RootIsol(A, I) and RootIsol(A, J).

How to implement E(A, (c, d))?

Two Varieties of Real Root Isolation Algorithm

Sturm Sequences

- **1** E(A, (c, d)) is computed from the Sturm sequence of A(X), A'(X).
- 2 E(A, (c, d)) = number of real roots of A(X) in (c, d).

Two Varieties of Real Root Isolation Algorithm

Sturm Sequences

- **1** E(A, (c, d)) is computed from the Sturm sequence of A(X), A'(X).
- 2 E(A, (c, d)) = number of real roots of A(X) in (c, d).

The Descartes' Rule of Signs

- **1** E(A, (c, d)) = sign variation in the Bernstein coeffs. of A(X) w.r.t. (c, d).
- 2 $E(A, (c, d)) \ge$ number of real roots of A(X) in (c, d) by a +ve even number.

Two Varieties of Real Root Isolation Algorithm

Sturm Sequences

- **1** E(A, (c, d)) is computed from the Sturm sequence of A(X), A'(X).
- 2 E(A, (c, d)) = number of real roots of A(X) in (c, d).

The Descartes' Rule of Signs

- **1** E(A, (c, d)) = sign variation in the Bernstein coeffs. of A(X) w.r.t. (c, d).
- 2 $E(A, (c,d)) \ge$ number of real roots of A(X) in (c,d) by a +ve even number.

In practice, the second approach is more efficient than the first one.

Transform A(X) as follows:

Transform A(X) as follows:

$$A(X) \to X^n A\left(a_0 + \frac{1}{X}\right)$$

 $a_0 \in \mathbb{N}_{\geq 0}$,

Transform A(X) as follows:

$$A(X) \to X^n A\left(a_0 + \frac{1}{X}\right) \to (a_1 X + 1)^n A\left(a_0 + \frac{1}{a_1 + \frac{1}{X}}\right)$$

$$a_0 \in \mathbb{N}_{\geq 0}, a_1 \in \mathbb{N}_{>0},$$

Transform A(X) as follows:

$$A(X) \to X^{n}A\left(a_{0} + \frac{1}{X}\right) \to (a_{1}X + 1)^{n}A\left(a_{0} + \frac{1}{a_{1} + \frac{1}{X}}\right)$$
$$\to (a_{1}a_{2}X + a_{1} + 1)^{n}A\left(a_{0} + \frac{1}{a_{1} + \frac{1}{x}}\right)$$

 $a_0 \in \mathbb{N}_{\geq 0}, a_1 \in \mathbb{N}_{>0}, a_2 \in \mathbb{N}_{>0}.$

Transform A(X) as follows:

$$A(X) \to X^n A\left(a_0 + \frac{1}{X}\right) \to (a_1 X + 1)^n A\left(a_0 + \frac{1}{a_1 + \frac{1}{X}}\right)$$
$$\to (a_1 a_2 X + a_1 + 1)^n A\left(a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{X}}}\right) \to \cdots$$

 $a_0 \in \mathbb{N}_{\geq 0}, a_1 \in \mathbb{N}_{>0}, a_2 \in \mathbb{N}_{>0}.$

Transform A(X) as follows:

$$A(X) \to X^n A\left(a_0 + \frac{1}{X}\right) \to (a_1 X + 1)^n A\left(a_0 + \frac{1}{a_1 + \frac{1}{X}}\right)$$
$$\to (a_1 a_2 X + a_1 + 1)^n A\left(a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{X}}}\right) \to \cdots$$

 $a_0 \in \mathbb{N}_{\geq 0}, a_1 \in \mathbb{N}_{>0}, a_2 \in \mathbb{N}_{>0}.$

Resulting polynomial has at most one sign variation in its coefficients.

Transform A(X) as follows:

$$A(X) \to X^n A\left(a_0 + \frac{1}{X}\right) \to (a_1 X + 1)^n A\left(a_0 + \frac{1}{a_1 + \frac{1}{X}}\right)$$
$$\to (a_1 a_2 X + a_1 + 1)^n A\left(a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{X}}}\right) \to \cdots$$

 $a_0 \in \mathbb{N}_{\geq 0}$, $a_1 \in \mathbb{N}_{>0}$, $a_2 \in \mathbb{N}_{>0}$.

Resulting polynomial has at most one sign variation in its coefficients.

Let Var(A) be the number of sign variations in the coefficients of A(X).

We want to isolate the positive roots of A(X).

Construct $A_R(X) := A(X+1)$, $M_R(X) := X+1$. Check if $Var(A_R)$ is 0 or 1.

Construct $A_L(X) := (X+1)^n A\left(\frac{1}{X+1}\right), M_L(X) := (X+1)^{-1}.$

Check if $Var(A_L)$ is 0 or 1.

Construct $A_{RR}(X) := A_R(X+1) = A(X+2), M_{RR}(X) := X+2.$

Check if $Var(A_{RR})$ is 0 or 1.

Construct
$$A_{RL}(X) := A_R(\frac{1}{1+X}) = A(1 + \frac{1}{1+X})$$
 and $M_{RL}(X) := 1 + \frac{1}{X+1}$.

Check $Var(A_{RL})$.

$$A_{LR}(X) = A_L(X+1) = (X+2)^n A\left(1+\frac{1}{2+X}\right), M_{LR}(X) := (X+2)^{-1}$$

$$\operatorname{Var}(A_{LR})=1$$
, return $M_{LR}(0)=rac{1}{2},$ $M_{LR}(\infty)=0$

$$A_{RL}(X) := (X+1)^n A_L(\frac{1}{1+X}) = (X+2)^n A\left(\frac{1}{1+\frac{1}{1+X}}\right), M_{LR}(X) := \frac{X+1}{X+2}$$

Vikram Sharma (INRIA, Sophia-Antipolis)

Real Root Isolation – Continued Fractions

 $Var(A_{RL}) = 1$, return $M_{RL}(0) = \frac{1}{2}$, $M_{RL}(\infty) = 1$

Continue recursively at each level

This was Uspensky's algorithm [Uspensky, 1948].

Vincent's Algorithm for Isolating Positive Roots

We want to isolate the positive roots of A(X).

Construct $A_R(X) := A(X+1)$, $M_R(X) := X+1$ and check if $Var(A_R)$ is 0 or 1.

Budan-Fourier

 $\#(\operatorname{roots}\,\operatorname{in}\,(0,1)) \leq \operatorname{Var}(A(X)) - \operatorname{Var}(A(X+1)) = \operatorname{Var}(A) - \operatorname{Var}(A_R).$

Exponential running time

• Consider the polynomial
$$A(X) = (X - 2^L)(X - 2^L - 1)$$
.

Exponential running time

- Consider the polynomial $A(X) = (X 2^L)(X 2^L 1)$.
- At depth *i* on the right most path the polynomial is $f(Y_i + i) = (Y_i i)(Y_i i)(Y_i i)$

$$A(X+i) = (X - (2^{L} - i))(X - (2^{L} + 1 - i)).$$

Exponential running time

- Consider the polynomial $A(X) = (X 2^L)(X 2^L 1)$.
- At depth *i* on the right most path the polynomial is $A(X+i) = (X-(2^L-i))(X-(2^L+1-i)).$
- To get the smallest positive root of A(X) in the unit interval $i \ge 2^{L}$.

Exponential running time

- Consider the polynomial $A(X) = (X 2^L)(X 2^L 1)$.
- At depth i on the right most path the polynomial is $A(X+i) = (X-(2^L-i))(X-(2^L+1-i)).$
- To get the smallest positive root of A(X) in the unit interval $i \ge 2^{L}$.

Two Solutions

[Collins/Akritas,1976]: Bisect the interval at each recursion level.

Exponential running time

- Consider the polynomial $A(X) = (X 2^L)(X 2^L 1)$.
- At depth i on the right most path the polynomial is $A(X+i) = (X-(2^L-i))(X-(2^L+1-i)).$
- To get the smallest positive root of A(X) in the unit interval $i \ge 2^{L}$.

Two Solutions

- [Collins/Akritas,1976]: Bisect the interval at each recursion level.
- [Akritas,1978]: Can we do better than shifts by unit length? Idea: Use a lower bound on the smallest positive root.

Exponential running time

- Consider the polynomial $A(X) = (X 2^L)(X 2^L 1)$.
- At depth i on the right most path the polynomial is $A(X+i) = (X-(2^L-i))(X-(2^L+1-i)).$
- To get the smallest positive root of A(X) in the unit interval $i \ge 2^{L}$.

Two Solutions

- [Collins/Akritas,1976]: Bisect the interval at each recursion level.
- [Akritas,1978]: Can we do better than shifts by unit length? Idea: Use a lower bound on the smallest positive root.

Advantages of Akritas' approach

- Faster in practice.
- Utilises distribution of roots.
- Computes the continued fraction approximation of the roots.

Input: Polynomial A(X) of degree *n* whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of A(X).

Input: Polynomial A(X) of degree *n* whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of A(X).

RootIsol(A, M)

• If Var(A) = 0 return.

Input: Polynomial A(X) of degree *n* whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of A(X).

- If Var(A) = 0 return.
- If Var(A) = 1 output the interval with end points $M(0), M(\infty)$.

Input: Polynomial A(X) of degree *n* whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of A(X).

- If Var(A) = 0 return.
- If Var(A) = 1 output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound *B* on the positive roots of A(X).

Input: Polynomial A(X) of degree *n* whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of A(X).

- If Var(A) = 0 return.
- If Var(A) = 1 output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound *B* on the positive roots of A(X).
- If $B \ge 1$ then A(X) := A(X+B), M(X) := M(X+B).

Input: Polynomial A(X) of degree *n* whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of A(X).

- If Var(A) = 0 return.
- If Var(A) = 1 output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound *B* on the positive roots of A(X).
- If $B \ge 1$ then A(X) := A(X+B), M(X) := M(X+B).
- Compute $A_R(X) := A(X+1)$ and $M_R(X) := M(X+1)$.

Input: Polynomial A(X) of degree *n* whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of A(X).

- If Var(A) = 0 return.
- If Var(A) = 1 output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound *B* on the positive roots of A(X).
- If $B \ge 1$ then A(X) := A(X+B), M(X) := M(X+B).
- Compute $A_R(X) := A(X+1)$ and $M_R(X) := M(X+1)$.
- If $\operatorname{Var}(A_R) < \operatorname{Var}(A)$ then $A_L(X) := (X+1)^n A(\frac{1}{X+1}), M_L(X) := M(\frac{1}{X+1}).$

Input: Polynomial A(X) of degree *n* whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of A(X).

- If Var(A) = 0 return.
- If Var(A) = 1 output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound *B* on the positive roots of A(X).
- If $B \ge 1$ then A(X) := A(X+B), M(X) := M(X+B).
- Compute $A_R(X) := A(X+1)$ and $M_R(X) := M(X+1)$.
- If $\operatorname{Var}(A_R) < \operatorname{Var}(A)$ then $A_L(X) := (X+1)^n A(\frac{1}{X+1}), M_L(X) := M(\frac{1}{X+1}).$
- $RootIsol(A_R, M_R)$ and $RootIsol(A_L, M_L)$.

Two steps for getting the worst-case bounds

- **1** Bound the worst-case size of the recursion tree:
 - number of inversion transformations, $X \rightarrow (X+1)^{-1}$ and
 - number of Taylor shifts.
- 2 Bound the worst-case complexity of a node in the recursion tree.

Two steps for getting the worst-case bounds

- **1** Bound the worst-case size of the recursion tree:
 - number of inversion transformations, $X \rightarrow (X+1)^{-1}$ and
 - number of Taylor shifts.
- 2 Bound the worst-case complexity of a node in the recursion tree.

Akritas' worst case bit-complexity

For $A(X) \in \mathbb{Z}[X]$, degree *n*, coefficients of bit-length $L - \widetilde{O}(n^4L^2)$:

- number of inversion transformations and Taylor shifts $\tilde{O}(n^2L)$.
- worst case bit-complexity of a node using fast integer arithmetic $\widetilde{O}(n^2L)$.

Two steps for getting the worst-case bounds

- **1** Bound the worst-case size of the recursion tree:
 - number of inversion transformations, $X \rightarrow (X+1)^{-1}$ and
 - number of Taylor shifts.
- 2 Bound the worst-case complexity of a node in the recursion tree.

Akritas' worst case bit-complexity

For $A(X) \in \mathbb{Z}[X]$, degree *n*, coefficients of bit-length $L - \widetilde{O}(n^4L^2)$:

- number of inversion transformations and Taylor shifts $\tilde{O}(n^2L)$.
- worst case bit-complexity of a node using fast integer arithmetic $\widetilde{O}(n^2L)$.

Drawbacks

- Assumes floor of the smallest positive root can be computed in O(1).
- Assumes Taylor shifts don't increase the bit-size.

Two steps for getting the worst-case bounds

- **1** Bound the worst-case size of the recursion tree:
 - number of inversion transformations, $X \rightarrow (X+1)^{-1}$ and
 - number of Taylor shifts.
- 2 Bound the worst-case complexity of a node in the recursion tree.

Akritas' worst case bit-complexity

For $A(X) \in \mathbb{Z}[X]$, degree *n*, coefficients of bit-length $L - \widetilde{O}(n^4L^2)$:

- number of inversion transformations and Taylor shifts $\tilde{O}(n^2L)$.
- worst case bit-complexity of a node using fast integer arithmetic $\widetilde{O}(n^2L)$.

Our worst case bit-complexity

Worst case bit-complexity is $\widetilde{O}(n^7L^2)$:

• number of inversion transformations $\widetilde{O}(nL)$; no. of Taylor shifts $\widetilde{O}(n^3L)$.

- If Var(A) = 0 return.
- If Var(A) = 1 output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound *B* on the positive roots of A(X).
- If $B \ge 1$ then A(X) := A(X+B), M(X) := M(X+B).
- Compute $A_R(X) := A(X+1)$ and $M_R(X) := M(X+1)$.
- If $\operatorname{Var}(A_R) < \operatorname{Var}(A)$ then $A_L(X) := (X+1)^n A(\frac{1}{X+1}), M_L(X) := M(\frac{1}{X+1}).$
- $RootIsol(A_R, M_R)$ and $RootIsol(A_L, M_L)$.
- What are the transformations M_R, M_L?
- What is the relation between A_R, A_L and the input polynomial?

• Transformation associated with root is *X*.

- Transformation associated with root is *X*.
- Do a Taylor shift $X \rightarrow X + a$.

- Transformation associated with root is *X*.
- Do a Taylor shift $X \rightarrow X + a$.
- Then the transformation $X \rightarrow \frac{1}{1+X}$.

- Transformation associated with root is *X*.
- Do a Taylor shift $X \rightarrow X + a$.
- Then the transformation $X \rightarrow \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X + b_0$.

- Transformation associated with root is *X*.
- Do a Taylor shift $X \rightarrow X + a$.
- Then the transformation $X \to \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X + b_0$.
- Again a Taylor shift by $X \rightarrow X + b_1$.

- Transformation associated with root is *X*.
- Do a Taylor shift $X \rightarrow X + a$.
- Then the transformation $X \to \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X + b_0$.
- Again a Taylor shift by $X \rightarrow X + b_1$.
- Followed by $X \to \frac{1}{1+X}$.

- Transformation associated with root is *X*.
- Do a Taylor shift $X \rightarrow X + a$.
- Then the transformation $X \rightarrow \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X + b_0$.
- Again a Taylor shift by $X \rightarrow X + b_1$.
- Followed by $X \to \frac{1}{1+X}$.
- Associated transformation is

$$a + \frac{1}{1+b_0+b_1+\frac{1}{1+X}}$$

- Transformation associated with root is *X*.
- Do a Taylor shift $X \rightarrow X + a$.
- Then the transformation $X \to \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X + b_0$.
- Again a Taylor shift by $X \rightarrow X + b_1$.
- Followed by $X \to \frac{1}{1+X}$.
- Associated transformation is

$$a + \frac{1}{1+b_0+b_1+\frac{1}{1+X}}$$

• Same as
$$a + \frac{1}{q + \frac{1}{1 + \chi}}$$
, $q = 1 + b_0 + b_1$.

- Transformation associated with root is *X*.
- Do a Taylor shift $X \rightarrow X + a$.
- Then the transformation $X \to \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X + b_0$.
- Again a Taylor shift by $X \rightarrow X + b_1$.
- Followed by $X \to \frac{1}{1+X}$.
- Associated transformation is

$$a + \frac{1}{1+b_0+b_1+\frac{1}{1+X}}$$

- Same as $a + \frac{1}{q + \frac{1}{1 + \chi}}$, $q = 1 + b_0 + b_1$.
- Collapse consecutive Taylor shifts into one.

- Transformation associated with root is *X*.
- Do a Taylor shift $X \rightarrow X + a$.
- Then the transformation $X \to \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X + b_0$.
- Again a Taylor shift by $X \rightarrow X + b_1$.
- Followed by $X \to \frac{1}{1+X}$.
- Associated transformation is

$$a + \frac{1}{1+b_0+b_1+\frac{1}{1+X}}$$

- Same as $a + \frac{1}{q + \frac{1}{1 + \chi}}$, $q = 1 + b_0 + b_1$.
- Collapse consecutive Taylor shifts into one.

What is the transformation in general?

where

- *m* is the number of inversion transformations $(X \rightarrow \frac{1}{1+X})$.
- $q_0 \ge 0$ the total amount of Taylor shifts to the first inversion transformation.
- *q_i* ≥ 1, for *i* = 1,...,*m*−1, the total amount of Taylor shifts between *i*-th and *i*+1-th inversion transformation; if there are no Taylor shifts *q_i* = 1.

where

- *m* is the number of inversion transformations $(X \rightarrow \frac{1}{1+X})$.
- $q_0 \ge 0$ the total amount of Taylor shifts to the first inversion transformation.
- *q_i* ≥ 1, for *i* = 1,...,*m*−1, the total amount of Taylor shifts between *i*-th and *i*+1-th inversion transformation; if there are no Taylor shifts *q_i* = 1.

Let *i*th quotient
$$\frac{P_i}{Q_i}$$
 be the finite continued fraction $q_0 + \frac{1}{q_1 + \frac{1}{q_1 + \frac{1}{q_1 + \frac{1}{q_i}}}$.
Then $P_i = q_i P_{i-1} + P_{i-2}$ and $Q_i = q_i Q_{i-1} + Q_{i-2}$.

$$q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{\cdots + \frac{1}{q_m + \chi}}}} = \frac{P_m X + P_{m-1}}{Q_m X + Q_{m-1}}.$$

where

- *m* is the number of inversion transformations $(X \rightarrow \frac{1}{1+X})$.
- $q_0 \ge 0$ the total amount of Taylor shifts to the first inversion transformation.
- *q_i* ≥ 1, for *i* = 1,...,*m*−1, the total amount of Taylor shifts between *i*-th and *i*+1-th inversion transformation; if there are no Taylor shifts *q_i* = 1.

Let *i*th quotient
$$\frac{P_i}{Q_i}$$
 be the finite continued fraction $q_0 + \frac{1}{q_1 + \frac{1}{q_1 + \frac{1}{\cdots + \frac{1}{q_i}}}$.
Then $P_i = q_i P_{i-1} + P_{i-2}$ and $Q_i = q_i Q_{i-1} + Q_{i-2}$.

The transformation associated with a node

Let *m* be the number of inversion transformations along the path and $M(X) := \frac{P_m X + P_{m-1}}{Q_m X + Q_{m-1}}$

The transformation associated with a node

Let m be the number of inversion transformations along the path and $M(X) := \frac{P_m X + P_{m-1}}{Q_m X + Q_{m-1}}$

The two features

• Polynomial $A_m(X) := (Q_m X + Q_{m-1})^n A(M(X)).$

The transformation associated with a node

Let m be the number of inversion transformations along the path and $M(X) := \frac{P_m X + P_{m-1}}{Q_m X + Q_{m-1}}$

The two features

- Polynomial $A_m(X) := (Q_m X + Q_{m-1})^n A(M(X)).$
- Interval I_m that has end-points $M(0) = \frac{P_{m-1}}{Q_{m-1}}$, $M(\infty) = \frac{P_m}{Q_m}$.

Note: Width of
$$I_m$$
 is $\left|\frac{P_m}{Q_m} - \frac{P_{m-1}}{Q_{m-1}}\right| = (Q_m Q_{m-1})^{-1}$.

The transformation associated with a node

Let m be the number of inversion transformations along the path and $M(X) := \frac{P_m X + P_{m-1}}{Q_m X + Q_{m-1}}$

The two features

- Polynomial $A_m(X) := (Q_m X + Q_{m-1})^n A(M(X)).$
- Interval I_m that has end-points $M(0) = \frac{P_{m-1}}{Q_{m-1}}, M(\infty) = \frac{P_m}{Q_m}$.

Note: Width of
$$I_m$$
 is $\left| \frac{P_m}{Q_m} - \frac{P_{m-1}}{Q_{m-1}} \right| = (Q_m Q_{m-1})^{-1}$

The positive roots of $A_m(X) \Leftrightarrow \text{Roots of } A(X)$ in I_m . Var $(A_m) = #(\text{number of roots of } A(X) \text{ in } I_m) + \text{even number.}$

The transformation associated with a node

Let m be the number of inversion transformations along the path and $M(X) := \frac{P_m X + P_{m-1}}{Q_m X + Q_{m-1}}$

The two features

- Polynomial $A_m(X) := (Q_m X + Q_{m-1})^n A(M(X)).$
- Interval I_m that has end-points $M(0) = \frac{P_{m-1}}{Q_{m-1}}$, $M(\infty) = \frac{P_m}{Q_m}$.

Note: Width of
$$I_m$$
 is $\left| \frac{P_m}{Q_m} - \frac{P_{m-1}}{Q_{m-1}} \right| = (Q_m Q_{m-1})^{-1}$

The positive roots of $A_m(X) \Leftrightarrow \text{Roots of } A(X)$ in I_m . Var $(A_m) = #(\text{number of roots of } A(X) \text{ in } I_m) + \text{even number.}$

When does the algorithm terminate? When is $Var(A_m) \le 1$?

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. I_m contains a single root of A(X) then $Var(A_m) = 1$; if no roots of A(X) then $Var(A_m) = 0$.

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. I_m contains a single root of A(X) then $Var(A_m) = 1$; if no roots of A(X) then $Var(A_m) = 0$.

Contrapositive

If $Var(A_m) \ge 2$, then the two-circles figure in \mathbb{C} w.r.t. interval I_m contains two roots α, β of A(X).

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. I_m contains a single root of A(X) then $Var(A_m) = 1$; if no roots of A(X) then $Var(A_m) = 0$.

Contrapositive

If $Var(A_m) \ge 2$, then the two-circles figure in \mathbb{C} w.r.t. interval I_m contains two roots α, β of A(X).

Corollary

We can choose a pair α, β of roots inside the two-circles such that

Two-circle Theorem ([Ostrowski, 1950]) If the two-circles figure w.r.t. I_m contains a single root of A(X) then $Var(A_m) = 1$; if no roots of A(X) then $Var(A_m) = 0$.

Contrapositive

If $Var(A_m) \ge 2$, then the two-circles figure in \mathbb{C} w.r.t. interval I_m contains two roots α, β of A(X).

Corollary

We can choose a pair α, β of roots inside the two-circles such that $|\beta - \alpha| < \sqrt{3}|I_m|$

Two-circle Theorem ([Ostrowski, 1950]) If the two-circles figure w.r.t. I_m contains a single root of A(X) then $Var(A_m) = 1$; if no roots of A(X) then $Var(A_m) = 0$.

Contrapositive

If $Var(A_m) \ge 2$, then the two-circles figure in \mathbb{C} w.r.t. interval I_m contains two roots α, β of A(X).

Corollary

We can choose a pair α, β of roots inside the two-circles such that $|\beta - \alpha| < \sqrt{3}|I_m|$, but $|I_m| = \left|\frac{P_m}{Q_m} - \frac{P_{m-1}}{Q_{m-1}}\right| = \frac{1}{Q_m Q_{m-1}}$. Thus

Two-circle Theorem ([Ostrowski, 1950]) If the two-circles figure w.r.t. I_m contains a single root of A(X) then $Var(A_m) = 1$; if no roots of A(X) then $Var(A_m) = 0$.

Contrapositive

If $Var(A_m) \ge 2$, then the two-circles figure in \mathbb{C} w.r.t. interval I_m contains two roots α, β of A(X).

Corollary

We can choose a pair α, β of roots inside the two-circles such that $|\beta - \alpha| < \sqrt{3}|I_m|$, but $|I_m| = \left|\frac{P_m}{Q_m} - \frac{P_{m-1}}{Q_{m-1}}\right| = \frac{1}{Q_m Q_{m-1}}$. Thus If $\operatorname{Var}(A_m) \ge 2$ then $\frac{1}{Q_m Q_{m-1}} > |\beta - \alpha|/\sqrt{3}$.

A path in the recursion tree of *RootIsol*(A,X), from the root to a parent J of two leaves. Let m be the number of inversion transformations along the path.

- A path in the recursion tree of *RootIsol*(A,X), from the root to a parent J of two leaves. Let m be the number of inversion transformations along the path.
- **2** Let I_m be the interval associated with J.

- A path in the recursion tree of *RootIsol*(A,X), from the root to a parent J of two leaves. Let m be the number of inversion transformations along the path.
- **2** Let I_m be the interval associated with J.
- 3 Since $\operatorname{Var}(A_m) \ge 2$, there is a pair of roots (α_J, β_J) of A(X) such that $|I_m| = \frac{1}{Q_m Q_{m-1}} \ge |\beta_J \alpha_J| / \sqrt{3}.$

- A path in the recursion tree of *RootIsol*(A,X), from the root to a parent J of two leaves. Let m be the number of inversion transformations along the path.
- **2** Let I_m be the interval associated with J.
- 3 Since Var(A_m) ≥ 2, there is a pair of roots (α_J, β_J) of A(X) such that |I_m| = 1/Q_{mQm-1} ≥ |β_J α_J|/√3.
 4 But Q_m = q_mQ_{m-1} + Q_{m-2} ≥ O_{m-1} + O_{m-2} > F_m ≥ φ^{m-1}.

- A path in the recursion tree of *RootIsol*(A,X), from the root to a parent J of two leaves. Let m be the number of inversion transformations along the path.
- **2** Let I_m be the interval associated with J.
- 3 Since $\operatorname{Var}(A_m) \ge 2$, there is a pair of roots (α_J, β_J) of A(X) such that $|I_m| = \frac{1}{Q_m Q_{m-1}} \ge |\beta_J \alpha_J| / \sqrt{3}.$
- 4 But $Q_m = q_m Q_{m-1} + Q_{m-2} \ge Q_{m-1} + Q_{m-2} \ge F_m \ge \phi^{m-1}$.
- 5 Thus $m \leq 2 \log_{\phi} |\beta_J \alpha_J|$.
- 6 This was shown by Uspensky and Ostrowski.

Akritas' Algorithm

RootIsol(A, M)

- If Var(A) = 0 return.
- If Var(A) = 1 output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound *B* on the positive roots of A(X).
- If $B \ge 1$ then A(X) := A(X + B), M(X) := M(X + B).
- Compute $A_R(X) := A(X+1)$ and $M_R(X) := M(X+1)$.
- If $\operatorname{Var}(A_R) < \operatorname{Var}(A)$ then $A_L(X) := (X+1)^n A(\frac{1}{X+1}), M_L(X) := M(\frac{1}{X+1}).$
- $RootIsol(A_R, M_R)$ and $RootIsol(A_L, M_L)$.

Akritas' Algorithm

RootIsol(A, M)

- If Var(A) = 0 return.
- If Var(A) = 1 output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound *B* on the positive roots of A(X).
- If $B \ge 1$ then A(X) := A(X+B), M(X) := M(X+B).
- Compute $A_R(X) := A(X+1)$ and $M_R(X) := M(X+1)$.
- If $\operatorname{Var}(A_R) < \operatorname{Var}(A)$ then $A_L(X) := (X+1)^n A(\frac{1}{X+1}), M_L(X) := M(\frac{1}{X+1}).$
- $RootIsol(A_R, M_R)$ and $RootIsol(A_L, M_L)$.

How do we compute a lower bound on positive roots of a polynomial?

Lower Bound on the smallest positive root

One Approach

- Roots of $X^n A(1/X)$ are inverse of the roots of A(X).
- Compute an upper bound U on the largest positive root of $X^n A(1/X)$.
- 1/U is a lower bound on the smallest positive root of A(X).

Lower Bound on the smallest positive root

One Approach

- Roots of $X^n A(1/X)$ are inverse of the roots of A(X).
- Compute an upper bound U on the largest positive root of $X^n A(1/X)$.
- 1/U is a lower bound on the smallest positive root of A(X).

Upper bound on positive roots, [Hong,98]

$$B(X) = \sum_{i=0}^{n} b_i X^i, \ b_n > 0. \ U(B) := 2 \max_{b_i < 0} \min_{b_j > 0, j > i} \left\{ \left| \frac{b_i}{b_j} \right|^{1/(j-i)} \right\}$$

Lower Bound on the smallest positive root

One Approach

- Roots of $X^n A(1/X)$ are inverse of the roots of A(X).
- Compute an upper bound U on the largest positive root of $X^n A(1/X)$.
- 1/U is a lower bound on the smallest positive root of A(X).

Upper bound on positive roots, [Hong,98]

$$B(X) = \sum_{i=0}^{n} b_i X^i, \ b_n > 0. \ U(B) := 2 \max_{b_i < 0} \min_{b_j > 0, j > i} \left\{ \left| \frac{b_i}{b_j} \right|^{1/(j-i)} \right\}$$

Tight lower bound

Define $PLB(A) := \frac{1}{U(X^n A(1/X))}$.

Suppose A(X) has only real roots in $\Re(z) > 0$ and α is the smallest positive root of A(X). Then

$$\frac{\alpha}{2n} \leq \operatorname{PLB}(A) < \alpha.$$

Assume the polynomial A(X) has only real roots. #(shifts needed to reach the floor of the smallest positive root α_0)?

•
$$\alpha_i = \alpha_{i-1} - \text{PLB}(A_{i-1}) \le \alpha_{i-1}(1 - \frac{1}{2n}).$$

•
$$\alpha_i = \alpha_{i-1} - \text{PLB}(A_{i-1}) \le \alpha_{i-1}(1 - \frac{1}{2n}).$$

• Thus
$$\alpha_i \leq \alpha_0 (1 - \frac{1}{2n})^i$$
.

- $\alpha_i = \alpha_{i-1} \operatorname{PLB}(A_{i-1}) \le \alpha_{i-1}(1 \frac{1}{2n}).$
- Thus $\alpha_i \leq \alpha_0 (1 \frac{1}{2n})^i$.
- Need at most $2n \log \alpha_0$ Taylor shifts to compute floor of α_0 .

Assume the polynomial A(X) has only real roots.

- Consider a path in the recursion tree of *RootIsol*(*A*,*M*(*X*)), *M*(*X*) = *X*, from the root to a parent *J* of two leaves.
- 2 Let α_J, β_J be the roots associated with the leaves.
- *m* be the number of inversion transformations along the path.

Assume the polynomial A(X) has only real roots.

Consider the *i*-th and i + 1-th inversion transformation.

 $A_i(X)$ be the polynomial associated with the blue node. a_1, \ldots, a_ℓ be its positive real roots.

Assume the polynomial A(X) has only real roots.

Consider the *i*-th and i + 1-th inversion transformation.

 $A_i(X)$ be the polynomial associated with the blue node. a_1, \ldots, a_ℓ be its positive real roots.

Assume the polynomial A(X) has only real roots.

Consider the *i*-th and i + 1-th inversion transformation.

 $A_i(X)$ be the polynomial associated with the blue node. a_1, \ldots, a_ℓ be its positive real roots.

#(Taylor shift) from *i*-th to i + 1-th transformation is bounded by $2n(\log a_1 + \dots + \log a_\ell) \le 2n^2 \log a_\ell \le 2n^2 \log q_i.$

Vikram Sharma (INRIA, Sophia-Antipolis)

Assume the polynomial A(X) has only real roots.

Consider the *i*-th and i + 1-th inversion transformation.

 $A_i(X)$ be the polynomial associated with the blue node. a_1, \ldots, a_ℓ be its positive real roots.

Assume the polynomial A(X) has only real roots.

Consider the *i*-th and i + 1-th inversion transformation.

 $A_i(X)$ be the polynomial associated with the blue node. a_1, \ldots, a_ℓ be its positive real roots.

#(Taylor shift) from *i*-th to i + 1-th transformation is bounded by $2n(\log a_1 + \dots + \log a_\ell) \le 2n^2 \log a_\ell \le 2n^2 \log q_i.$

Vikram Sharma (INRIA, Sophia-Antipolis)

Assume the polynomial A(X) has only real roots.

Consider the *i*-th and i + 1-th inversion transformation.

 $A_i(X)$ be the polynomial associated with the blue node. a_1, \ldots, a_ℓ be its positive real roots.

Assume the polynomial A(X) has only real roots.

Consider the *i*-th and i + 1-th inversion transformation.

 $A_i(X)$ be the polynomial associated with the blue node. a_1, \ldots, a_ℓ be its positive real roots.

Assume the polynomial A(X) has only real roots.

Consider the *i*-th and i + 1-th inversion transformation.

 $A_i(X)$ be the polynomial associated with the blue node. a_1, \ldots, a_ℓ be its positive real roots.

Assume the polynomial A(X) has only real roots.

Consider the *i*-th and i + 1-th inversion transformation.

 $A_i(X)$ be the polynomial associated with the blue node. a_1, \ldots, a_ℓ be its positive real roots.

#(Taylor shift) from *i*-th to i + 1-th transformation is bounded by $2n(\log a_1 + \dots + \log a_\ell) \le 2n^2 \log a_\ell \le 2n^2 \log q_i.$

Vikram Sharma (INRIA, Sophia-Antipolis)

Assume the polynomial A(X) has only real roots.

 $A_i(X)$ be the polynomial associated with the blue node. a_1, \ldots, a_ℓ be its positive real roots.

#(Taylor shift) from *i*-th to i + 1-th transformation is bounded by $2n(\log a_1 + \dots + \log a_\ell) \le 2n^2 \log a_\ell \le 2n^2 \log q_i.$

Total number of Taylor shifts on the path to *J* is $n^2 O(\sum_{i=1}^m \log q_i)$.

Assume the polynomial A(X) has only real roots.

Total number of Taylor shifts on the path to *J* is $n^2 O(\sum_{i=1}^m \log q_i)$.

We can show $\sum_{i=1}^{m} \log q_i = O(\log |\alpha_J - \beta_J|^{-1}).$

Assume the polynomial A(X) has only real roots.

Total number of Taylor shifts on the path to *J* is $n^2 O(\sum_{i=1}^m \log q_i)$.

We can show $\sum_{i=1}^{m} \log q_i = O(\log |\alpha_J - \beta_J|^{-1}).$

Total number of Taylor shifts on the path to *J* is $n^2 O(\log |\alpha_J - \beta_J|^{-1}).$

Vikram Sharma (INRIA, Sophia-Antipolis)

Assume the polynomial A(X) has only real roots.

Proposition

The total number of Taylor shifts in the tree is bounded by

$$n^2 O(\sum_J \log |\alpha_J - \beta_J|^{-1}).$$

Lower bound on $\prod_J |\alpha_J - \beta_J|$?

 $\sum_{i=1}^{m} \log q_i = O(\log |\alpha_J - \beta_J|^{-1}).$

Total number of Taylor shifts on the path to *J* is $n^2O(\log |\alpha_J - \beta_J|^{-1}).$

Vikram Sharma (INRIA, Sophia-Antipolis)

The Davenport–Mahler bound

Theorem (Davenport–Mahler [Dav., 1985] [Du/Sharma/Yap, 2005])

Consider a polynomial $A(X) \in \mathbb{C}[X]$ of degree *n*.

Let G = (V, E) be a DAG whose vertices are the roots of A(X). If

(i)
$$(\alpha, \beta) \in E \implies |\alpha| \le |\beta|$$
, and

(ii) in-degree of all vertices is at most one.

then

$$\prod_{(\alpha,\beta)\in E} |\beta-\alpha| \geq \frac{\sqrt{|\operatorname{discr}(A)|}}{\operatorname{M}(A)^{n-1}} \cdot 2^{-O(n\log n)}$$

where, if ϑ_i are roots of A(X),

discr(A) :=
$$a_n^{2n-2} \prod_{i>j} (\vartheta_i - \vartheta_j)^2$$
 and $M(A) := |a_n| \prod_i \max\{1, |\vartheta_i|\}.$

The Davenport–Mahler bound

Theorem (Davenport–Mahler [Dav., 1985] [Du/Sharma/Yap, 2005])

Consider a polynomial $A(X) \in \mathbb{C}[X]$ of degree n.

Let G = (V, E) be a DAG whose vertices are the roots of A(X). If

(i) $(\alpha,\beta)\in E\implies |lpha|\le |eta|$, and

(ii) in-degree of all vertices is at most one.

then

$$\prod_{\alpha,\beta)\in E} |\beta-\alpha| \geq \frac{\sqrt{|\mathrm{discr}(A)|}}{\mathrm{M}(A)^{n-1}} \cdot 2^{-O(n\log n)}$$

where, if ϑ_i are roots of A(X),

discr(A) :=
$$a_n^{2n-2} \prod_{i>j} (\vartheta_i - \vartheta_j)^2$$
 and $M(A) := |a_n| \prod_i \max\{1, |\vartheta_i|\}.$

The Davenport–Mahler bound

Theorem (Davenport-Mahler [Dav., 1985] [Du/Sharma/Yap, 2005])

Consider a polynomial $A(X) \in \mathbb{C}[X]$ of degree n.

Let G = (V, E) be a DAG whose vertices are the roots of A(X). If

(i)
$$(lpha,eta)\in E\implies |lpha|\leq |eta|$$
 , and

(ii) in-degree of all vertices is at most one.

then

$$\prod_{\alpha,\beta)\in E} |\beta-\alpha| \geq \frac{\sqrt{|\operatorname{discr}(A)|}}{\operatorname{M}(A)^{n-1}} \cdot 2^{-O(n\log n)}$$

where, if ϑ_i are roots of A(X),

discr
$$(A) := a_n^{2n-2} \prod_{i>j} (\vartheta_i - \vartheta_j)^2$$
 and $M(A) := |a_n| \prod_i \max\{1, |\vartheta_i|\}.$

Corollary

If $A(X) \in \mathbb{Z}[X]$ is square-free, has degree *n*, and coefficient bit-length *L* then $\prod_{(\alpha,\beta)\in E} |\beta - \alpha| = 2^{-O(nL)}.$

Assume A(X) has degree *n*, coefficient bit-length *L* and only real roots.

Assume A(X) has degree *n*, coefficient bit-length *L* and only real roots.

Number of inversion transformations

$$\sum_J (2 - \log |\beta_J - \alpha_J|) = \widetilde{O}(nL).$$

Assume A(X) has degree *n*, coefficient bit-length *L* and only real roots.

Number of inversion transformations

$$\sum_J (2 - \log |\beta_J - \alpha_J|) = \widetilde{O}(nL).$$

Number of Taylor shifts

$$n^2 \sum_J \log |\beta_J - \alpha_J|^{-1} = \widetilde{O}(n^3 L)$$

Assume A(X) has degree *n*, coefficient bit-length *L* and only real roots.

Number of inversion transformations

$$\sum_{J}(2-\log|\beta_J-\alpha_J|)=\widetilde{O}(nL).$$

Number of Taylor shifts

$$n^2 \sum_J \log |\beta_J - \alpha_J|^{-1} = \widetilde{O}(n^3 L)$$

Theorem

Let A(X) be a square-free polynomial of degree n, and integer coefficients of bit-length L. The size of the recursion tree of Akritas' algorithm run on A(X) is bounded by

• $\widetilde{O}(n^3L)$, if A(X) has only real roots

Assume A(X) has degree *n*, coefficient bit-length *L* and only real roots.

Number of inversion transformations

$$\sum_{J}(2-\log|\beta_J-\alpha_J|)=\widetilde{O}(nL).$$

Number of Taylor shifts

$$n^2 \sum_J \log |\beta_J - \alpha_J|^{-1} = \widetilde{O}(n^3 L)$$

Theorem

Let A(X) be a square-free polynomial of degree n, and integer coefficients of bit-length L. The size of the recursion tree of Akritas' algorithm run on A(X) is bounded by

- $\widetilde{O}(n^3L)$, if A(X) has only real roots
- The result holds in general!

• Let *m* be the number of inversion transformations along a path.

- Let *m* be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from *i*-th to i + 1-th inversion transformation be q_i , i = 0, ..., m.

- Let *m* be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from *i*-th to i + 1-th inversion transformation be q_i , i = 0, ..., m.
- Cost of computing $A(X+q_i)$ using classical Taylor shifts?
 - **1** Total number of operations (Taylor shifts & Hong's bound) $O(n^2)$.

- Let *m* be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from *i*-th to i + 1-th inversion transformation be q_i , i = 0, ..., m.
- Cost of computing $A(X+q_i)$ using classical Taylor shifts?
 - **1** Total number of operations (Taylor shifts & Hong's bound) $O(n^2)$.
 - **2** Bit-size of the quantities added $L + n \log q_0 + \cdots + n \log q_i$.

- Let *m* be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from *i*-th to i + 1-th inversion transformation be q_i , i = 0, ..., m.
- Cost of computing $A(X+q_i)$ using classical Taylor shifts?
 - **1** Total number of operations (Taylor shifts & Hong's bound) $O(n^2)$.
 - **2** Bit-size of the quantities added $L + n \log q_0 + \cdots + n \log q_i$.
 - 3 Cost is $O(n^2M(L+n\log q_0+\cdots+n\log q_i))$; M(p) is the cost of multiplying two *p*-bit integers.

- Let *m* be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from *i*-th to i + 1-th inversion transformation be q_i , i = 0, ..., m.
- Cost of computing $A(X+q_i)$ using classical Taylor shifts?
 - **1** Total number of operations (Taylor shifts & Hong's bound) $O(n^2)$.
 - **2** Bit-size of the quantities added $L + n \log q_0 + \cdots + n \log q_i$.
 - 3 Cost is $O(n^2M(L+n\log q_0+\cdots+n\log q_i))$; M(p) is the cost of multiplying two *p*-bit integers.
- We can show $\sum_{i=0}^{m} \log q_i = \widetilde{O}(nL).$

- Let *m* be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from *i*-th to i + 1-th inversion transformation be q_i , i = 0, ..., m.
- Cost of computing $A(X+q_i)$ using classical Taylor shifts?
 - **1** Total number of operations (Taylor shifts & Hong's bound) $O(n^2)$.
 - **2** Bit-size of the quantities added $L + n \log q_0 + \cdots + n \log q_i$.
 - 3 Cost is $O(n^2M(L+n\log q_0+\cdots+n\log q_i))$; M(p) is the cost of multiplying two *p*-bit integers.
- We can show $\sum_{i=0}^{m} \log q_i = \widetilde{O}(nL)$.
- Thus worst-case complexity of a node assuming fast integer arithmetic is $\widetilde{O}(n^4L)$.

- Let *m* be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from *i*-th to i + 1-th inversion transformation be q_i , i = 0, ..., m.
- Cost of computing $A(X+q_i)$ using classical Taylor shifts?
 - **1** Total number of operations (Taylor shifts & Hong's bound) $O(n^2)$.
 - **2** Bit-size of the quantities added $L + n \log q_0 + \cdots + n \log q_i$.
 - 3 Cost is $O(n^2M(L+n\log q_0+\cdots+n\log q_i))$; M(p) is the cost of multiplying two *p*-bit integers.
- We can show $\sum_{i=0}^{m} \log q_i = \widetilde{O}(nL)$.
- Thus worst-case complexity of a node assuming fast integer arithmetic is $\widetilde{O}(n^4L)$.

Cannot use asymptotically fast Taylor shifts [vzGathen/Gerhard, 1997].

- Let *m* be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from *i*-th to i + 1-th inversion transformation be q_i , i = 0, ..., m.
- Cost of computing $A(X+q_i)$ using classical Taylor shifts?
 - **1** Total number of operations (Taylor shifts & Hong's bound) $O(n^2)$.
 - **2** Bit-size of the quantities added $L + n \log q_0 + \cdots + n \log q_i$.
 - 3 Cost is $O(n^2M(L+n\log q_0+\cdots+n\log q_i))$; M(p) is the cost of multiplying two *p*-bit integers.
- We can show $\sum_{i=0}^{m} \log q_i = \widetilde{O}(nL)$.
- Thus worst-case complexity of a node assuming fast integer arithmetic is $\widetilde{O}(n^4L)$.

Cannot use asymptotically fast Taylor shifts [vzGathen/Gerhard, 1997].

Combined with our worst-case bound $\widetilde{O}(n^3L)$ on tree-size.
Main Result

Theorem

For a square-free integer polynomial of degree n, and coefficients of bit-length L, the worst-case running time of Akritas' algorithm is bounded by $\tilde{O}(n^7L^2)$.

Expected Complexity, [Tsigaridas/Emiris, 2006]

The size of the tree

- Assumes floor of the smallest positive root can be computed in O(1).
- Number of Taylor shifts \sim Number of inversion transformations.
- So the size of the tree is $\widetilde{O}(nL)$.

Expected Complexity, [Tsigaridas/Emiris, 2006]

The size of the tree

- Assumes floor of the smallest positive root can be computed in O(1).
- Number of Taylor shifts \sim Number of inversion transformations.
- So the size of the tree is $\tilde{O}(nL)$.

Expected complexity of a node

- From Khinchin's result we know $E[\sum_{j=0}^{i} \log q_j] = i + 1 = \widetilde{O}(nL)$.
- Expected cost at a node is $O(n^2M(L+n\sum_{j=0}^i b_i)) = \widetilde{O}(n^4L)$.

Expected Complexity, [Tsigaridas/Emiris, 2006]

The size of the tree

- Assumes floor of the smallest positive root can be computed in O(1).
- Number of Taylor shifts \sim Number of inversion transformations.
- So the size of the tree is $\tilde{O}(nL)$.

Expected complexity of a node

- From Khinchin's result we know $E[\sum_{j=0}^{i} \log q_j] = i + 1 = \widetilde{O}(nL)$.
- Expected cost at a node is $O(n^2M(L+n\sum_{i=0}^i b_i)) = \widetilde{O}(n^4L).$

Theorem

Expected running time of Akritas' algorithm:

- $\widetilde{O}(n^5L^2)$ using classical Taylor shifts with fast integer arithmetic,
- $\widetilde{O}(n^4L^2)$ using asymptotically fast Taylor shifts.

Input: $A(X) \in \mathbb{R}[X]$ of degree *n*, and (c,d). Output: Isolating intervals for roots of A(X) in (c,d).

Input: $A(X) \in \mathbb{R}[X]$ of degree *n*, and (c,d). Output: Isolating intervals for roots of A(X) in (c,d).

Estimate on the number of roots, E(A, (c, d))

$$\begin{split} & \text{Let } A(X) = \sum_{i=0}^{n} a_i \binom{n}{i} (X-c)^i (d-X)^{n-i} (d-c)^{-n}. \\ & E(A,(c,d)) := \text{\#(sign variations in } (a_n,a_{n-1},\ldots,a_0)). \end{split}$$

- If E(A, (c, d)) = 0 then A(X) has no roots in (c, d).
- If E(A, (c, d)) = 1 then A(X) has one root in (c, d).

Input: $A(X) \in \mathbb{R}[X]$ of degree *n*, and (c,d). Output: Isolating intervals for roots of A(X) in (c,d).

Estimate on the number of roots, E(A, (c, d))

$$\begin{split} \text{Let}\, A(X) &= \sum_{i=0}^n a_i \binom{n}{i} (X-c)^i (d-X)^{n-i} (d-c)^{-n}. \\ & E(A,(c,d)) := \text{\#(sign variations in } (a_n,a_{n-1},\ldots,a_0)). \end{split}$$

- If E(A, (c, d)) = 0 then A(X) has no roots in (c, d).
- If E(A, (c, d)) = 1 then A(X) has one root in (c, d).

- If E(A, (c, d)) = 0 return.
- If E(A, (c, d)) = 1 output (c, d).

Input: $A(X) \in \mathbb{R}[X]$ of degree *n*, and (c,d). Output: Isolating intervals for roots of A(X) in (c,d).

Estimate on the number of roots, E(A, (c, d))

$$\begin{split} \text{Let}\, A(X) &= \sum_{i=0}^n a_i \binom{n}{i} (X-c)^i (d-X)^{n-i} (d-c)^{-n}. \\ & E(A,(c,d)) := \text{\#(sign variations in } (a_n,a_{n-1},\ldots,a_0)). \end{split}$$

- If E(A, (c, d)) = 0 then A(X) has no roots in (c, d).
- If E(A, (c, d)) = 1 then A(X) has one root in (c, d).

- If E(A, (c, d)) = 0 return.
- If E(A, (c, d)) = 1 output (c, d).
- If m := (c+d)/2 is a root of A(X) output [m,m].

Input: $A(X) \in \mathbb{R}[X]$ of degree *n*, and (c,d). Output: Isolating intervals for roots of A(X) in (c,d).

Estimate on the number of roots, E(A, (c, d))

$$\begin{split} \text{Let}\, A(X) &= \sum_{i=0}^n a_i \binom{n}{i} (X-c)^i (d-X)^{n-i} (d-c)^{-n}. \\ & E(A,(c,d)) := \text{\#(sign variations in } (a_n,a_{n-1},\ldots,a_0)). \end{split}$$

- If E(A, (c, d)) = 0 then A(X) has no roots in (c, d).
- If E(A, (c, d)) = 1 then A(X) has one root in (c, d).

- If E(A, (c, d)) = 0 return.
- If E(A, (c, d)) = 1 output (c, d).
- If m := (c+d)/2 is a root of A(X) output [m,m].
- Call Descartes(A, (c, m)) and Descartes(A, (m, d)).

Input: $A(X) \in \mathbb{R}[X]$ of degree *n*, and (c,d). Output: Isolating intervals for roots of A(X) in (c,d).

Estimate on the number of roots, E(A, (c, d))

$$\begin{split} \text{Let}\, A(X) &= \sum_{i=0}^n a_i \binom{n}{i} (X-c)^i (d-X)^{n-i} (d-c)^{-n}. \\ & E(A,(c,d)) := \text{\#(sign variations in } (a_n,a_{n-1},\ldots,a_0)). \end{split}$$

- If E(A, (c, d)) = 0 then A(X) has no roots in (c, d).
- If E(A, (c, d)) = 1 then A(X) has one root in (c, d).

- If E(A, (c, d)) = 0 return.
- If E(A, (c, d)) = 1 output (c, d).
- If m := (c+d)/2 is a root of A(X) output [m,m].
- Call Descartes(A, (c, m)) and Descartes(A, (m, d)).

	Descartes	Akritas
Complexity	$\widetilde{O}(n^5L^2)$	$\widetilde{O}(n^7 L^2)$
Size of the tree	$\widetilde{O}(nL)$	$\widetilde{O}(n^3L)$

	Descartes	Akritas
Complexity	$\widetilde{O}(n^5L^2)$	$\widetilde{O}(n^7 L^2)$
Size of the tree	$\widetilde{O}(nL)$	$\widetilde{O}(n^3L)$

Reasons

- Width of the interval doesn't necessarily go down by half at each recursion step.
- Lower bound is off by a factor of n (Σ).

	Descartes	Akritas
Complexity	$\widetilde{O}(n^5L^2)$	$\widetilde{O}(n^7 L^2)$
Size of the tree	$\widetilde{O}(nL)$	$\widetilde{O}(n^3L)$

Reasons

- Width of the interval doesn't necessarily go down by half at each recursion step.
- Lower bound is off by a factor of n (\bigcirc).

But...

- Degree 100 Mignotte's polynomials (Xⁿ (aX 1)²): [Emiris/Tsigaridas, '06]: Descartes 7.83sec. and Akritas 0.02sec.
- Available in Mathematica.
- [Collins/Akritas, 1976]: $O(n^6L^2)$; [Johnson, 1998]: $O(n^4L^2)$.

Possible ways to improve the complexity

1 Derive tight bounds on largest positive root of a polynomial in O(n) operations. Bounds by [Kioustelidis, 1986; Ştefănescu, 2005] are known to be not tight. A recent bound by Akritas et al. might help.

Possible ways to improve the complexity

- 1 Derive tight bounds on largest positive root of a polynomial in O(n) operations. Bounds by [Kioustelidis, 1986; Ştefănescu, 2005] are known to be not tight. A recent bound by Akritas et al. might help.
- 2 Instead of using Horner's method for computing A(X+b), scale by *b* and shift by one.

Possible ways to improve the complexity

- 1 Derive tight bounds on largest positive root of a polynomial in O(n) operations. Bounds by [Kioustelidis, 1986; Ştefănescu, 2005] are known to be not tight. A recent bound by Akritas et al. might help.
- 2 Instead of using Horner's method for computing A(X+b), scale by *b* and shift by one.

Open question

For Mignotte's polynomial $X^n - 2(aX - 1)^2$, $a \in \mathbb{N}$, the size of the recursion tree is $O(\log a)$ using Zassenhaus' bound (the Descartes method has recursion tree size $\Omega(n \log a)$).

Main Result

For a square-free polynomial A(X), degree *n*, and coefficient bit-length *L*:

1 Worst case bit-complexity of Akritas' algorithm is $\tilde{O}(n^7L^2)$.

Main Result

For a square-free polynomial A(X), degree *n*, and coefficient bit-length *L*:

- **1** Worst case bit-complexity of Akritas' algorithm is $\widetilde{O}(n^7 L^2)$.
- **2** Worst case number of Taylor shifts $\tilde{O}(n^3L)$.

Main Result

For a square-free polynomial A(X), degree *n*, and coefficient bit-length *L*:

- **1** Worst case bit-complexity of Akritas' algorithm is $\tilde{O}(n^7L^2)$.
- **2** Worst case number of Taylor shifts $\tilde{O}(n^3L)$.
- 3 Using a bound by Hong to compute the floor of the smallest positive root (instead of assuming that it can be done in constant time).

Main Result

For a square-free polynomial A(X), degree n, and coefficient bit-length L:

- **1** Worst case bit-complexity of Akritas' algorithm is $\tilde{O}(n^7L^2)$.
- **2** Worst case number of Taylor shifts $\tilde{O}(n^3L)$.
- 3 Using a bound by Hong to compute the floor of the smallest positive root (instead of assuming that it can be done in constant time).
- Using Davenport's bound to amortize the bit-size of continued fractions (instead of using Khinchin's result).

Main Result

For a square-free polynomial A(X), degree *n*, and coefficient bit-length *L*:

- **1** Worst case bit-complexity of Akritas' algorithm is $\tilde{O}(n^7L^2)$.
- **2** Worst case number of Taylor shifts $\tilde{O}(n^3L)$.
- 3 Using a bound by Hong to compute the floor of the smallest positive root (instead of assuming that it can be done in constant time).
- Using Davenport's bound to amortize the bit-size of continued fractions (instead of using Khinchin's result).

Paper is available from http://www.cs.nyu.edu/sharma/pap/.

Merci!