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Real Root Isolation

Let A(X) be a polynomial with coefficients in R. )
A(X)
¢ 3\
\ 7
c d

Fundamental Task
Computer Algebra, Computational Geometry, Quantifier Elimination etc.

A(X) is a square-free polynomial of degree n. J
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A General Subdivision Algorithm for Real Root Isolation
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A General Subdivision Algorithm for Real Root Isolation

Estimate on number of real roots
e E(A (c,d)) an upper bound on number of real roots of A(X) in (c,d).
o IfE(A, (c,d)) = 1then there is exactly one real root of A(X) in (c,d).
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e E(A (c,d)) an upper bound on number of real roots of A(X) in (c,d).
o IfE(A, (c,d)) = 1then there is exactly one real root of A(X) in (c,d).

Input: Polynomial A(X) € R[X] and (c,d) C R.
Output: List of isolating intervals for real roots of A(X) in (c,d).
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A General Subdivision Algorithm for Real Root Isolation

Estimate on number of real roots
e E(A (c,d)) an upper bound on number of real roots of A(X) in (c,d).
o IfE(A, (c,d)) = 1then there is exactly one real root of A(X) in (c,d).

Input: Polynomial A(X) € R[X] and (c,d) C R.
Output: List of isolating intervals for real roots of A(X) in (c,d).

Rootlsol (A, (c,d))
If E(A, (c,d)) =Oreturn.
If E(A, (c,d)) = 1 output (c,d).
Partition (c,d) into two intervals I, J.
B Rootlsol (A, 1) and Rootlsol (A, J).
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A General Subdivision Algorithm for Real Root Isolation

Estimate on number of real roots
e E(A (c,d)) an upper bound on number of real roots of A(X) in (c,d).
o IfE(A, (c,d)) = 1then there is exactly one real root of A(X) in (c,d).

Input: Polynomial A(X) € R[X] and (c,d) C R.
Output: List of isolating intervals for real roots of A(X) in (c,d).

Rootlsol (A, (c,d))
If E(A, (c,d)) =Oreturn.
If E(A, (c,d)) = 1 output (c,d).
Partition (c,d) into two intervals I, J.
B Rootlsol (A, 1) and Rootlsol (A, J).

How to implement E(A, (c,d))? )
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Two Varieties of Real Root Isolation Algorithm

Sturm Sequences
E(A, (c,d)) is computed from the Sturm sequence of A(X), A’ (X).
E(A, (c,d)) = number of real roots of A(X) in (c,d).
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Two Varieties of Real Root Isolation Algorithm

Sturm Sequences
E(A, (c,d)) is computed from the Sturm sequence of A(X), A’ (X).
E(A, (c,d)) = number of real roots of A(X) in (c,d).

The Descartes’ Rule of Signs
E(A, (c,d)) = sign variation in the Bernstein coeffs. of A(X) w.r.t. (c,d).

E(A, (c,d)) > number of real roots of A(X) in (c,d) by a +ve even
number.
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Two Varieties of Real Root Isolation Algorithm

Sturm Sequences
E(A, (c,d)) is computed from the Sturm sequence of A(X), A’ (X).
E(A, (c,d)) = number of real roots of A(X) in (c,d).

The Descartes’ Rule of Signs
E(A, (c,d)) = sign variation in the Bernstein coeffs. of A(X) w.r.t. (c,d).

E(A, (c,d)) > number of real roots of A(X) in (c,d) by a +ve even
number.

In practice, the second approach is more efficient than the first one. )
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Vincent's Theorem, 1836

Transform A(X) as follows:
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Vincent's Theorem, 1836

Transform A(X) as follows:

A(X) — X"A (ao + %)

ap € N>o,
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Vincent's Theorem, 1836

Transform A(X) as follows:

A(X)—>X”A(ao+£) — (@ X+1)"Al ag+ T
X al+i

a0 € N>o, &1 € N>,
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Vincent's Theorem, 1836

Transform A(X) as follows:

A(X) — X"A (ao+ l) — (@ X+1)"Al ag+ T
X a;+ X

— (gapX+a;+ 1)nA ap+
a1+

ag+x

ao € IN>o, &1 € N0, a2 € N-o.

)
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Vincent's Theorem, 1836

Transform A(X) as follows:

A(X) — X"A (ao+ l) — (@ X+1)"Al ag+ T
X a;+ X

1
— (@aX+a+1)"Alat ——— | =

a+

ag+x

ap € IN>o, &1 € N0, a2 € N-o.

)

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation — Continued Fractions

5/28



Vincent's Theorem, 1836

Transform A(X) as follows:

1
AX) — XA (ao+ 1) — (aX+1)"A 2+ —
X a1+ X

1
— (@aX+a+1)"Alat ——— | =
a1+az+%

ap € IN>p, &1 € N0, @ € N.o.

Resulting polynomial has at most one sign variation in its coefficients.

J
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Vincent's Theorem, 1836

Transform A(X) as follows:

1 1
A(X) — X"A (ao+ —) — (@ X+1)"Al ag+ T
X a+ X

1
— (@aX+a+1)"Alat ——— | =
a+

arti

ap € IN>o, &1 € N0, a2 € N-o.

Resulting polynomial has at most one sign variation in its coefficients.

)

Let Var(A) be the number of sign variations in the coefficients of A(X). J
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We want to isolate the positive roots of A(X).
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Construct Ar(X) :=A(X+ 1), Mr(X) :=X+ 1. Check if Var(Ag) is O or 1.
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Construct A (X) :=(X+1)"A(g37), ML(X):=(X+ 1)L,
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Check if Var(A,) is O or 1.
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v
Construct Agr(X) :=AR(X+1) = A(X+2), Mgr(X) :=X+2.
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Check if Var(Agg) is O or 1.
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7 \‘ .

Construct Ar, (X) :=Ar(1ig) = AL+ 1) and Mre(X) =1+ 315
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MOX)=(X+2)/(X+1)

7N

Check Var(AgL).
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I A

’ M(X)=1/(X+2) M(X)=(X+2)/(X+1) ‘

\ /.\.‘

ARX) = AL(X+1) = (X+2)"A (14 525, Mir(X) :=(X+2) 72
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t
M(X)=(X+1)/(X+2) / ’ \M(X):]j()(+2) M(X)=(X+2)/(X+1) / ‘ \
’ ‘ ‘ . . ‘

L]
| oo o :

T T

ARL(X) =X+ 1)"AL(12%) = (X+2)"A (ﬁ;) Mir(X) =55
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t t t t f
.
°
M(X)=(X+1)/(X+2) M(X)=1/(X+2) M(X)=(X+2)/(X+1)

’ 7N ‘ _ \‘
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t t t t f
.
°
M(X)=(X+1)/(X+2) M(X)=1/(X+2) M(X)=(X+2)/(X+1)

’ 7N ‘ _ \‘

R A

/N SN

v
Continue recursively at each level
y.
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t
M(X)=(X+1)/(X+2) / ’ \M(X):]j()(+2) M(X)=(X+2)/(X+1) / ‘ \
’ ‘ ‘ . . ‘

L]
| oo o :

R A

/N SN

This was Uspensky’s algorithm [Uspensky, 1948].
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Vincent's Algorithm for Isolating Positive Roots

We want to isolate the positive roots of A(X).
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Vincent's Algorithm for Isolating Positive Roots

Construct Ar(X) :=A(X+ 1), Mr(X):=X+ 1 and check if Var(Ag) is 0 or 1.

v
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Vincent's Algorithm for Isolating Positive Roots

Is Var(Ag) < Var(A)?
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Vincent's Algorithm for Isolating Positive Roots

Construct AL(X) :==(X+ 1)"A (531 ). ML(X) :=(X+1)~2,
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Vincent's Algorithm for Isolating Positive Roots

I
/’\ . /’.\.

Continue recursively at each level
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Vincent's Algorithm for Isolating Positive Roots

If Var(AR) = Var(A) then don’t construct A (X).
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Vincent's Algorithm for Isolating Positive Roots

’ AX)
‘ Lz, s \
But proceed recursively from Ar(X).
y
Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation — Continued Fractions 7128




Vincent's Algorithm for Isolating Positive Roots

SN
If Var(AR) = Var(A) then don’t construct A (X).

Budan-Fourier
#(roots in (0,1)) < Var(A(X)) —Var(A(X+1)) = Var(A) — Var(Ag).
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Drawback of Vincent's Algorithm
Exponential running time
e Consider the polynomial A(X) = (X —24)(X —2- —1).
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Drawback of Vincent's Algorithm
Exponential running time
e Consider the polynomial A(X) = (X —24)(X —2- —1).

e At depth i on the right most path the polynomial is
AX+i)=X—=(2L=i)(X= (2L +1-1)).
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Drawback of Vincent's Algorithm
Exponential running time
e Consider the polynomial A(X) = (X —24)(X —2- —1).

e At depth i on the right most path the polynomial is
AX+i)=(X— (2" =i)(X— (2L +1-10)).
e To get the smallest positive root of A(X) in the unit interval i > 2-.
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e At depth i on the right most path the polynomial is
AX+i)=(X— (2" =i)(X— (2L +1-10)).
e To get the smallest positive root of A(X) in the unit interval i > 2-.

Two Solutions
e [Collins/Akritas,1976]: Bisect the interval at each recursion level.
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e At depth i on the right most path the polynomial is
AX+i)=(X— (2" =i)(X— (2L +1-10)).
e To get the smallest positive root of A(X) in the unit interval i > 2-.

Two Solutions
e [Collins/Akritas,1976]: Bisect the interval at each recursion level.

o [Akritas,1978]: Can we do better than shifts by unit length?
Idea: Use a lower bound on the smallest positive root.
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Drawback of Vincent’s Algorithm
Exponential running time
e Consider the polynomial A(X) = (X —24)(X —2- —1).

e At depth i on the right most path the polynomial is
AX+i)=(X— (2" =i)(X— (2L +1-10)).
e To get the smallest positive root of A(X) in the unit interval i > 2-.

Two Solutions
e [Collins/Akritas,1976]: Bisect the interval at each recursion level.

o [Akritas,1978]: Can we do better than shifts by unit length?
Idea: Use a lower bound on the smallest positive root.

Advantages of Akritas’ approach
e Faster in practice.
e Utilises distribution of roots.
e Computes the continued fraction approximation of the roots.
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).

Rootlsol (A, M)
e If Var(A) = Oreturn.
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).

Rootlsol (A, M)
e If Var(A) = Oreturn.
e If Var(A) = 1 output the interval with end points M(0), M().
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).

Rootlsol (A, M)
e If Var(A) = Oreturn.
e If Var(A) = 1 output the interval with end points M(0), M().
e Compute a lower bound B on the positive roots of A(X).
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).

Rootlsol (A, M)
e If Var(A) = Oreturn.
e If Var(A) = 1 output the interval with end points M(0), M().

e Compute a lower bound B on the positive roots of A(X).
e If B> 1then A(X):=A(X+B), M(X):=M(X+B).
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).

Rootlsol (A, M)
e If Var(A) = Oreturn.
e If Var(A) = 1 output the interval with end points M(0), M().
e Compute a lower bound B on the positive roots of A(X).
e If B> 1then A(X):=A(X+B), M(X):=M(X+B).
e Compute Ar(X):=A(X+1) and Mg(X):=M(X+1).
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.

Output: List of isolating intervals for the positive roots of A(X).

Rootlsol (A, M)
e If Var(A) = Oreturn.
If var(A) = 1 output the interval with end points M(0), M (o).
Compute a lower bound B on the positive roots of A(X).
If B> 1then A(X):=A(X+B), M(X):=M(X+B).
Compute Ar(X) :=A(X+ 1) and Mr(X) :=M(X+1).

If Var(Ag) < Var(A) then AL(X):=(X + 1)"A(31), ML(X) =M (g

).
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Akritas’ Algorithm

Input: Polynomial A(X) of degree n whose coefficients are real numbers.
Output: List of isolating intervals for the positive roots of A(X).

Rootlsol (A, M)
e If Var(A) = Oreturn.
e If Var(A) = 1 output the interval with end points M(0), M().
e Compute a lower bound B on the positive roots of A(X).
e If B> 1then A(X):=A(X+B), M(X):=M(X+B).
e Compute Ar(X):=A(X+1) and Mg(X):=M(X+1).
o If Var(Ar) < Var(A) then AL(X) :=(X + 1)"A(g1), ML(X) =M (g
¢ Rootlsol (Ar,Mg) and Rootlsol (A, ML ).

).
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Worst case bit-complexity of Akritas’ algorithm?
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Worst case bit-complexity of Akritas’ algorithm?

Two steps for getting the worst-case bounds

Bound the worst-case size of the recursion tree:

 number of inversion transformations, X — (X+1)~! and
e number of Taylor shifts.

Bound the worst-case complexity of a node in the recursion tree.
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Worst case bit-complexity of Akritas’ algorithm?

Two steps for getting the worst-case bounds

Bound the worst-case size of the recursion tree:

e number of inversion transformations, X — (X+1)~! and
e number of Taylor shifts.

Bound the worst-case complexity of a node in the recursion tree.

Akritas’ worst case bit-complexity
For A(X) € Z[X], degree n, coefficients of bit-length L— O(n*L2):
e number of inversion transformations and Taylor shifts — 6(n2L).

* worst case bit-complexity of a node using fast integer arithmetic —
O(rPL).
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Worst case bit-complexity of Akritas’ algorithm?

Two steps for getting the worst-case bounds

Bound the worst-case size of the recursion tree:

e number of inversion transformations, X — (X+1)~! and
e number of Taylor shifts.

Bound the worst-case complexity of a node in the recursion tree.

Akritas’ worst case bit-complexity
For A(X) € Z[X], degree n, coefficients of bit-length L— O(n*L2):
e number of inversion transformations and Taylor shifts — 6(n2L).

* worst case bit-complexity of a node using fast integer arithmetic —
O(rPL).

Drawbacks

¢ Assumes floor of the smallest positive root can be computed in O(1).
e Assumes Taylor shifts don't increase the bit-size.
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Worst case bit-complexity of Akritas’ algorithm?

Two steps for getting the worst-case bounds

Bound the worst-case size of the recursion tree:

e number of inversion transformations, X — (X+1)~! and
e number of Taylor shifts.

Bound the worst-case complexity of a node in the recursion tree.

Akritas’ worst case bit-complexity
For A(X) € Z[X], degree n, coefficients of bit-length L— O(n*L2):
e number of inversion transformations and Taylor shifts — 6(n2L).

* worst case bit-complexity of a node using fast integer arithmetic —
O(rPL).

Our worst case hit-complexity
Worst case bit-complexity is O(n’L?):

e number of inversion transformations O(nL); no. of Taylor shifts O(nL).

N Y ] EN PPN PN
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Akritas’ Algorithm

Rootlsol (A, M)

If Var(A) = Oreturn.

If Var(A) = 1 output the interval with end points M(0), M ().
Compute a lower bound B on the positive roots of A(X).

If B> 1then A(X):=A(X+B), M(X):=M(X+B).

Compute Ar(X) :=A(X+ 1) and Mr(X) :=M(X+1).

If Var(Ar) < Var(A) then AL (X) :=(X+ 1)"A(s1), ML(X) :=M(gt).
Rootl sol (Ar,Mg) and Rootlsol (A, M\ ).

What are the transformations Mg, M ?
What is the relation between Agr, A and the input polynomial?
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The transformation associated with a node in the tree

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation — Continued Fractions



The transformation associated with a node in the tree

e Transformation associated with root is X.

O
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The transformation associated with a node in the tree

e Transformation associated with root is X.

e Do a Taylor shift X — X +a. @\Q
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The transformation associated with a node in the tree

e Transformation associated with root is X.
e Do a Taylor shift X — X +a.

e Then the transformation X — =

1+X*
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The transformation associated with a node in the tree

e Transformation associated with root is X.
e Do a Taylor shift X — X +a.

e Then the transformation X — =

T+X-
e Then a Taylor shift X — X+ by.
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The transformation associated with a node in the tree

e Transformation associated with root is X.
Do a Taylor shift X — X +a.

Then the transformation X — 1J+x

Then a Taylor shift X — X+ by.

Again a Taylor shift by X — X+ b;.
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The transformation associated with a node in the tree

e Transformation associated with root is X.
Do a Taylor shift X — X +a.
Then the transformation X —

1
X

Then a Taylor shift X — X+ by.

Again a Taylor shift by X — X+ b;.

1
X"

Followed by X —
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The transformation associated with a node in the tree

e Transformation associated with root is X.
e Do a Taylor shift X — X +a.

e Then the transformation X — 1J+x

e Then a Taylor shift X — X+ by.

e Again a Taylor shift by X — X+ b;.

1
X"

e Associated transformation is

1
a [ —
+ 1+bo+by+ HLX

e Followed by X —
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The transformation associated with a node in the tree

e Transformation associated with root is X.
e Do a Taylor shift X — X +a.

e Then the transformation X — 1J+x

e Then a Taylor shift X — X+ by.

e Again a Taylor shift by X — X+by.

e Followed by X — 1+_x

e Associated transformation is

1
a [ —
+ 1+bo+by+ HLX

. Sameasa+qui,q 1+bo+ba.

1+X
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The transformation associated with a node in the tree

e Transformation associated with root is X.
e Do a Taylor shift X — X +a.

e Then the transformation X — =

T+X-
e Then a Taylor shift X — X+ by.

e Again a Taylor shift by X — X+by.
e Followed by X — 1+_x

e Associated transformation is
1
a+ 1+bo+b1+1%<
e Same as a+ q+i, g=1+bg+ bs.

1+X
e Collapse consecutive Taylor shifts into one.
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The transformation associated with a node in the tree

e Transformation associated with root is X.
e Do a Taylor shift X — X +a.

e Then the transformation X — =

T+X-
e Then a Taylor shift X — X+ by.

e Again a Taylor shift by X — X+by.
e Followed by X — 1+_x

e Associated transformation is
1
a+ 1+bo+b1+1%<
e Same as a+ q+i, g=1+bg+ bs.

1+X
e Collapse consecutive Taylor shifts into one.

4

What is the transformation in general? J
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The transformation associated with a node in the tree

Co+ L
0 1
q1+q2+—1

0 1
ot gm-+X

where
e mis the number of inversion transformations (X — 1J+x)-

e (o > O the total amount of Taylor shifts to the first inversion
transformation.

e g >1fori=1,...,m—1, the total amount of Taylor shifts between i-th
and i + 1-th inversion transformation; if there are no Taylor shifts g; = 1.
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The transformation associated with a node in the tree

1
Qo+ 1

o —

0 1
ot gm-+X

where

e mis the number of inversion transformations (X — 1J+x)-
e (o > O the total amount of Taylor shifts to the first inversion
transformation.

e g >1fori=1,...,m—1, the total amount of Taylor shifts between i-th
and i + 1-th inversion transformation; if there are no Taylor shifts g; = 1.

Let ith quotient % be the finite continued fraction g + ﬁ
1

., 1
.+q

Then Pi = qiPi_1 +Pi_2and Q = giQi_1 + Qi_».
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The transformation associated with a node in the tree

1 PmX+ Pm_
Jo+ . _ Mm m—1

Gt g—r— QX+Qma

0 1
ot gm-+X

where

e mis the number of inversion transformations (X — 1J+x)-
e (o > O the total amount of Taylor shifts to the first inversion
transformation.

e g >1fori=1,...,m—1, the total amount of Taylor shifts between i-th
and i + 1-th inversion transformation; if there are no Taylor shifts g; = 1.

Let ith quotient % be the finite continued fraction gp + Q++
1

., 1
PFW

Then Pi = qiPi_1 +Pi_2and Q = giQi_1 + Qi_».
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Two additional features associated with a node in the tree

The transformation associated with a node

Let m be the number of inversion transformations along the path and

. PmX+Pm_
M (X) T QmX+Qm—11
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Two additional features associated with a node in the tree

The transformation associated with a node

Let m be the number of inversion transformations along the path and

. PmX+Pm_
M (X) T QmX+Qm—11

The two features

o Polynomial Am(X) :=(QmX+ Qm-1)"A(M(X)).
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Two additional features associated with a node in the tree
The transformation associated with a node
Let m be the number of inversion transformations along the path and

. PmX+Pm_
M (X) T QmX+Qm—11

The two features

o Polynomial Am(X) :=(QmX+ Qm-1)"A(M(X)).
e Interval I, that has end-points M(0) = gmj M(o0) = %.

Note: Width of Iy is = (QmQm-1)?

_m_L
Qm  Qm-
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Two additional features associated with a node in the tree

The transformation associated with a node

Let m be the number of inversion transformations along the path and

. PmX+Pm_
M (X) T QmX+Qm—11

The two features

o Polynomial Am(X) :=(QmX+ Qm-1)"A(M(X)).
e Interval I, that has end-points M(0) = P“H, M(o0) = %_

Note: Width of Iy, is

= m’

Pm _ Fm-1
Qm  Qm-

(QQO 1)

The positive roots of An(X) < Roots of A(X) in Im.
Var(Am) = #(number of roots of A(X) in Im) + even number
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Two additional features associated with a node in the tree

The transformation associated with a node

Let m be the number of inversion transformations along the path and

. PmX+Pm_
M (X) T QmX+Qm—11

The two features

o Polynomial Am(X) :=(QmX+ Qm-1)"A(M(X)).

e Interval I, that has end-points M(0) = P“H, M(o0) = %.

(QQO 1)

Note: Width of Iy, is

= m’

Pm _ Fm-1
Qm  Qm-

The positive roots of An(X) < Roots of A(X) in Im.
Var(Am) = #(number of roots of A(X) in Im) + even number

When does the algorithm terminate? When is Var(Am) < 1?
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Termination Criterion: Two-Circle Theorem
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Termination Criterion: Two-Circle Theorem
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Termination Criterion: Two-Circle Theorem

Two-circle Theorem ([Ostrowski, 1950])
If the two-circles figure w.r.t. |, contains a
single root of A(X) then Var(Am) = 1;

m if no roots of A(X) then Var(Am) = 0.
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Termination Criterion: Two-Circle Theorem

Two-circle Theorem ([Ostrowski, 1950])
If the two-circles figure w.r.t. |, contains a
single root of A(X) then Var(Am) = 1;

m if no roots of A(X) then Var(Am) = 0.

Contrapositive

If Var(Am) > 2, then the two-circles figure in C
w.r.t. interval |, contains two roots a, 8 of A(X).

vy
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Termination Criterion: Two-Circle Theorem

Two-circle Theorem ([Ostrowski, 1950])
If the two-circles figure w.r.t. |, contains a
single root of A(X) then Var(Am) = 1;

m if no roots of A(X) then Var(Am) = 0.

Contrapositive

If Var(Am) > 2, then the two-circles figure in C
w.r.t. interval |, contains two roots a, 8 of A(X).

vy

Corollary

We can choose a pair a, 3 of roots inside the two-circles such that
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Termination Criterion: Two-Circle Theorem

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. |, contains a
single root of A(X) then Var(An) = 1;

if no roots of A(X) then Var(Am) = 0.

Contrapositive

If Var(Am) > 2, then the two-circles figure in C
w.r.t. interval |, contains two roots a, 8 of A(X).

vy

Corollary

We can choose a pair a, 3 of roots inside the two-circles such that

’B_a‘ < \/§||m’
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Termination Criterion: Two-Circle Theorem

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. |, contains a
single root of A(X) then Var(An) = 1;

if no roots of A(X) then Var(Am) = 0.

Contrapositive

If Var(Am) > 2, then the two-circles figure in C
w.r.t. interval |, contains two roots a, 8 of A(X).

vy

Corollary

We can choose a pair a, 3 of roots inside the two-circles such that

P P
B~ al < V3lin , butIn] = | G2 — G2 = GG Thus

Qm - Qm
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Termination Criterion: Two-Circle Theorem

Two-circle Theorem ([Ostrowski, 1950])

If the two-circles figure w.r.t. |, contains a
single root of A(X) then Var(An) = 1;

if no roots of A(X) then Var(Am) = 0.

Contrapositive

If Var(Am) > 2, then the two-circles figure in C
w.r.t. interval |, contains two roots a, 8 of A(X).

vy

Corollary

We can choose a pair a, 3 of roots inside the two circles such that

w_ Pma|
IB—a| < v3|Im|, but |Iy| = P__Qmi ok Thus
If Var(Am) > 2then 55— > [B— al/v3.
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Number of Inversion Transformations along a path to a leaf

A path in the recursion tree of
Rootlsol (A, X), from the root to a parent J
of two leaves. Let m be the number of
inversion transformations along the path.
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Number of Inversion Transformations along a path to a leaf

A path in the recursion tree of
Rootlsol (A, X), from the root to a parent J
of two leaves. Let m be the number of
inversion transformations along the path.

Let I, be the interval associated with J.
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Number of Inversion Transformations along a path to a leaf

A path in the recursion tree of
Rootlsol (A, X), from the root to a parent J
of two leaves. Let m be the number of
inversion transformations along the path.

Let I, be the interval associated with J.

Since Var(An) > 2, there is a pair of roots
(ay, By) of A(X) such that
Il = 56 = By — aul/V/3.
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Number of Inversion Transformations along a path to a leaf

A path in the recursion tree of
Rootlsol (A, X), from the root to a parent J
of two leaves. Let m be the number of
inversion transformations along the path.

Let I, be the interval associated with J.

Since Var(An) > 2, there is a pair of roots
(ay, By) of A(X) such that
Il = 56 = By — aul/V/3.

But Qm = OmQm-1+ Qm-2 >
mel + Qm72 > I:m > (pm—l_
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Number of Inversion Transformations along a path to a leaf

A path in the recursion tree of
Rootlsol (A, X), from the root to a parent J
of two leaves. Let m be the number of
inversion transformations along the path.

Let I, be the interval associated with J.

Since Var(An) > 2, there is a pair of roots
(ay, By) of A(X) such that
Il = 56 = By — aul/V/3.

But Qm = qmQm-1+Qm-2 >
Qm-1-+Qm-2>Fn> @M1

Thusm< 2 — Iog(p]BJ —ay|.

@ This was shown by Uspensky and

y Ostrowski.
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Number of Inversion Transformations along a path to a leaf

e | é pqt.h i.n/t_he‘:re(?ursior\ tree of
Proposition ntJ
g The total number of inversion transformations in the tree are h.
bounded by
3 (210Gl — ). :
)ots
(ag,B3) of A(X) such that
Il = g > 1By~ aal/v/3
But Qm = qmQm-1+Qm-2 >
mel + mez > I:m > (pm—l_
Thusm< 2 — Iog(p]BJ —ay|.
@ This was shown by Uspensky and
% s y Ostrowski. )

15/28
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Akritas’ Algorithm

Rootlsol (A, M)
e If Var(A) = Oreturn.
e If Var(A) = 1 output the interval with end points M(0), M().
e Compute a lower bound B on the positive roots of A(X).
e If B> 1then A(X):=A(X+B), M(X):=M(X+B).
e Compute Ar(X):=A(X+1) and Mr(X) :=M(X+1).
e If Var(Ag) < Var(A) then AL(X):=(X + 1)"A(y1), ML(X) =M (7).
¢ Rootlsol (Ar,Mg) and Rootlsol (A, ML ).
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Akritas’ Algorithm

Rootlsol (A, M)

If var(A) = Oreturn.

If Var(A) = 1 output the interval with end points M(0), M(0).
Compute a lower bound B on the positive roots of A(X).

If B> 1then A(X):=A(X+B), M(X):=M(X+B).

Compute Ar(X):=A(X+ 1) and Mr(X) :=M(X+1).

If Var(Ag) < Var(A) then A_(X) :=(X + 1)"A(y1), ML(X) =M (7).

Rootl sol (Ar,Mg) and Rootlsol (A, ML ).

v

How do we compute a lower bound on positive roots of a polynomial?

J
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Lower Bound on the smallest positive root

One Approach
e Roots of X"A(1/X) are inverse of the roots of A(X).
e Compute an upper bound U on the largest positive root of X"A(1/X).
e 1/U is a lower bound on the smallest positive root of A(X).
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Lower Bound on the smallest positive root

One Approach
e Roots of X"A(1/X) are inverse of the roots of A(X).
e Compute an upper bound U on the largest positive root of X"A(1/X).
e 1/U is a lower bound on the smallest positive root of A(X).

Upper bound on positive roots, [Hong,98]

. 1/] i)
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Lower Bound on the smallest positive root

One Approach
e Roots of X"A(1/X) are inverse of the roots of A(X).
e Compute an upper bound U on the largest positive root of X"A(1/X).
e 1/U is a lower bound on the smallest positive root of A(X).

Upper bound on positive roots, [Hong,98]

! . 11/3G-1)
B(X) = 31 obiX!, by > 0. U(B) :=2maxp o Ming ~.0;i {’%“ }

Tight lower bound

Define PLB(A) ::m.
Suppose A(X) has only real roots in [1(z) > 0 and o is the smallest positive
root of A(X). Then

& <PLB(A) < a.
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root ag)?
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root ag)?

A(X)
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root ag)?

A(X)

o>
N
5
-
®

Since PLB(A) is a lower bound on ap we have % <PLB(A).

Real Root Isolation — Continued Fractions
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root ag)?

A X)=A(X+a

B=By & =05 & Y©Yy %

Shift A(X) by PLB(A) to obtain A1 (X).
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root ag)?

A X)=A(X+a

a
Z1
B=PRy 2 2n 0=05 & VEVs %
e.—;'—l—o—o%
a=PLB(A)

Suppose a1 > 1. Then 52 < PLB(A1).
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root ag)?

A {X)=A £X+a1)

BB & 0=0 &

<

A5
<
=l
4

Shift A1 (X) by a; to get Ayx(X).
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Bound on the number of Taylor shifts along a path
Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root ag)?

A {X)=A £X+a1)

2
BB~ & n o 0=ay g YZYT &

Again suppose a2 > 1. Then 52 < PLB(A).

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation — Continued Fractions 18/28



Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root ag)?

AfX)=A[X+2)

B3= [32_ az

=05 & YEY; &

This continues until aj < 1, i.e., we compute the floor of ayg.
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root ag)?

ALX)=AfX+a)

BB & CEET & VrYz; &

This continues until aj < 1, i.e., we compute the floor of ayg.

e oy =ai_1—PLB(A_1) < ai_1(1— ).

2n
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root ag)?

ALX)=AfX+a)

BB & CEET & VrYz; &

This continues until aj < 1, i.e., we compute the floor of ayg.

e Thus 0j < ao(1—5-)".
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Bound on the number of Taylor shifts along a path

Assume the polynomial A(X) has only real roots.
#(shifts needed to reach the floor of the smallest positive root ag)?

ALX)=AfX+a)

BB & CEET & R

This continues until aj < 1, i.e., we compute the floor of ayg.

e oy =ai_1—PLB(A_1) < ai_1(1— ).
e Thus 0j < ao(1—5-)".
e Need at most 2nlog ag Taylor shifts to compute floor of ay.
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Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots. J

Consider a path in the
recursion tree of
Rootlsol (A,M(X)),
M(X) = X, from the root to
a parent J of two leaves.

Let ay, 33 be the roots
associated with the leaves.

m be the number of
inversion transformations
along the path.
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Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots. J

Consider the i-th and i + 1-th
inversion transformation.

A;(X) be the polynomial
associated with the blue node.
a,...,ay be its positive real
roots.

#(Taylor shift) from i-th to
i + 1-th transformation is
bounded by

2n(loga; + - -- +logay) <
2n?loga, < 2n?logg.
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Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots. J

Consider the i-th and i + 1-th
inversion transformation.

A;(X) be the polynomial
associated with the blue node.
a,...,ay be its positive real
roots.

#(Taylor shift) from i-th to
i + 1-th transformation is
bounded by

2n(loga; + - -- +logay) <
2n?loga, < 2n?logg.
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inversion transformation.

A;(X) be the polynomial
associated with the blue node.
a,...,ay be its positive real
roots.

#(Taylor shift) from i-th to
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Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots. J

A;(X) be the polynomial
associated with the blue node.
ai,...,ay be its positive real
roots.

#(Taylor shift) from i-th to
i + 1-th transformation is
bounded by

2n(loga; +--- +logay) <
2n°logay < 2n?logg;.

Total number of Taylor shifts on
the path to Jis n?O(y ™, logq;)

v
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Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots. J

Total number of Taylor shifts on
the path to J is nzO(zi"lllogqi).J

We can show
>it1l0gg; = O(log|ay —BJ|_1)-J
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Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots. J

Total number of Taylor shifts on
the path to J is n?O(3", logq;)

4

We can show
s, loggi = O(log|ay — B 1)

4

Total number of Taylor shifts on
the path to J is
n’O(log|as — Bs|~Y).
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Number of Taylor shifts along a path in the tree

Assume the polynomial A(X) has only real roots. J

Proposition
The total number of Taylor shifts in the tree is bounded by

nZO(ZIog|aJ —Bl™).

Lower bound on [];|a; — Bs]?
2i1109G; = L(log|ay — 3| *)

4

Total number of Taylor shifts on
the path to J is
n?O(log|ay — By 1.

19/28
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The Davenport—Mahler bound

Theorem (Davenport—Mabhler [Dav., 1985] [Du/Sharma/Yap, 2005])
Consider a polynomial A(X) € C[X] of degree n.
Let G= (V,E) be a DAG whose vertices are the roots of A(X). If
() (a,B) eE = |af <[], and
(ii) in-degree of all vertices is at most one.
th /Tdi
en |B _ a| > |d|g:r(Al)| . 2—O(nlogn)
- n— b
(ap)<E M(A)
where, if J; are roots of A(X),

discr(A) :=a2"2 [ - 8)? and M(A) := |an| []max{L, |8i[}.
1>] i
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The Davenport—Mahler bound

Theorem (Davenport—Mabhler [Dav., 1985] [Du/Sharma/Yap, 2005])
Consider a polynomial A(X) € C[X] of degree n.
Let G= (V,E) be a DAG whose vertices are the roots of A(X). If
() (a,B) €cE = |a| <[], and
(ii) in-degree of all vertices is at most one.
i Bal> [discr(A)]|

—O(nl
(a.B)eE M(A)n-1 2o,
a,B)e

where, if J; are roots of A(X),

discr(A) :=a2"2 [ - 8)? and M(A) := |an| []max{L, |8i[}.
1>] i
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The Davenport—Mahler bound

Theorem (Davenport—Mabhler [Dav., 1985] [Du/Sharma/Yap, 2005])

Consider a polynomial A(X) € C[X] of degree n.

Let G= (V,E) be a DAG whose vertices are the roots of A(X). If

() (a,B) €E = |a| <[B], and

(ii) in-degree of all vertices is at most one.
then

B—a|> VISR

—O(nl
(a.B)eE M(A)n-1 2o,
a,B)e

where, if J; are roots of A(X),

discr(A) :=a2"2 [ - 8)? and M(A) := |an| []max{L, |8i[}.
1>] i

Corollary

If A(X) € Z[X] is square-free, has degree n, and coefficient bit-length L then
rlaB eE‘B C¥| 2" OnL)

v
Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation — Continued Fractions

20/28



Bound on the Size of the Recursion Tree

Assume A(X) has degree n, coefficient bit-length L and only real roots. J
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Bound on the Size of the Recursion Tree

Assume A(X) has degree n, coefficient bit-length L and only real roots. J
Number of inversion transformations
53(2—10g|B; — as) = O(nL). J
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Bound on the Size of the Recursion Tree

Assume A(X) has degree n, coefficient bit-length L and only real roots.

Number of inversion transformations

Y3(2—log|B; —ay]) = O(nL).

Number of Taylor shifts

n®3,log|B; — ay| ™ = O(n’L)
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Bound on the Size of the Recursion Tree

Assume A(X) has degree n, coefficient bit-length L and only real roots. J

Number of inversion transformations

Y3(2—log|B; —ay]) = O(nL).

Number of Taylor shifts
n?;l0g|B; — ay|~* = O(n°L)

Theorem

Let A(X) be a square-free polynomial of degree n, and integer coefficients of
bit-length L. The size of the recursion tree of Akritas’ algorithm run on A(X) is
bounded by

o O(m3L), if A(X) has only real roots
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Bound on the Size of the Recursion Tree

Assume A(X) has degree n, coefficient bit-length L and only real roots. J

Number of inversion transformations

Y3(2—log|B; —ay]) = O(nL).

Number of Taylor shifts
'y ;log|B; — as|~* = O(nL)

Theorem

Let A(X) be a square-free polynomial of degree n, and integer coefficients of
bit-length L. The size of the recursion tree of Akritas’ algorithm run on A(X) is
bounded by

o O(m3L), if A(X) has only real roots
e The result holds in general!
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Worst case bit-complexity of a node in the tree

e Let mbe the number of inversion transformations along a path.
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Worst case bit-complexity of a node in the tree

e Let mbe the number of inversion transformations along a path.

o Let the total amount of Taylor shift from i-th to i 4+ 1-th inversion
transformation be g;, i =0,...,m.
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Worst case bit-complexity of a node in the tree

e Let mbe the number of inversion transformations along a path.

o Let the total amount of Taylor shift from i-th to i 4+ 1-th inversion
transformation be g;, i =0,...,m.
e Cost of computing A(X + g;) using classical Taylor shifts?
Total number of operations (Taylor shifts & Hong's bound) O(nz).
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Worst case bit-complexity of a node in the tree

e Let mbe the number of inversion transformations along a path.

o Let the total amount of Taylor shift from i-th to i 4+ 1-th inversion
transformation be g;, i =0,...,m.
e Cost of computing A(X + g;) using classical Taylor shifts?

Total number of operations (Taylor shifts & Hong's bound) O(nz).
Bit-size of the quantities added L + nloggp+ - - - +nlogg;.
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Worst case bit-complexity of a node in the tree

e Let mbe the number of inversion transformations along a path.

o Let the total amount of Taylor shift from i-th to i 4+ 1-th inversion
transformation be g;, i =0,...,m.
e Cost of computing A(X + g;) using classical Taylor shifts?
Total number of operations (Taylor shifts & Hong's bound) O(nz).
Bit-size of the quantities added L + nloggp+ - - - +nlogg;.
Cost is O(N?M(L +nlogqo+ - -- +nlogg;)); M(p) is the cost of
multiplying two p-bit integers.
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Worst case bit-complexity of a node in the tree

Let m be the number of inversion transformations along a path.

Let the total amount of Taylor shift from i-th to i + 1-th inversion
transformation be g;, i =0,...,m.
Cost of computing A(X+ q;) using classical Taylor shifts?

Total number of operations (Taylor shifts & Hong's bound) O(nz).

Bit-size of the quantities added L + nloggp+ - - - +nlogg;.

Cost is O(N?M(L +nlogqo+ - -- +nlogg;)); M(p) is the cost of
multiplying two p-bit integers.

We can show y{";logg; = O(nL).
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Worst case bit-complexity of a node in the tree

e Let mbe the number of inversion transformations along a path.

o Let the total amount of Taylor shift from i-th to i 4+ 1-th inversion
transformation be g;, i =0,...,m.
e Cost of computing A(X + g;) using classical Taylor shifts?
Total number of operations (Taylor shifts & Hong's bound) O(nz).
Bit-size of the quantities added L + nloggp+ - - - +nlogg;.
Cost is O(N?M(L +nlogqo+ - -- +nlogg;)); M(p) is the cost of
multiplying two p-bit integers.
o We can show 3" logg = O(nL).
e Thus worst-case complexity of a node assuming fast integer arithmetic is

O(nL).

o
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Worst case bit-complexity of a node in the tree

e Let mbe the number of inversion transformations along a path.

o Let the total amount of Taylor shift from i-th to i 4+ 1-th inversion
transformation be g;, i =0,...,m.
e Cost of computing A(X + g;) using classical Taylor shifts?
Total number of operations (Taylor shifts & Hong's bound) O(nz).
Bit-size of the quantities added L + nloggp+ - - - +nlogg;.
Cost is O(N?M(L +nlogqo+ - -- +nlogg;)); M(p) is the cost of
multiplying two p-bit integers.
o We can show 3" logg = O(nL).
e Thus worst-case complexity of a node assuming fast integer arithmetic is

O(nL).

o

Cannot use asymptotically fast Taylor shifts [vzGathen/Gerhard, 1997]. J
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Worst case bit-complexity of a node in the tree

e Let mbe the number of inversion transformations along a path.

e Let the total amount of Taylor shift from i-th to i + 1-th inversion
transformation be g;, i =0,...,m.
e Cost of computing A(X + g;) using classical Taylor shifts?
Total number of operations (Taylor shifts & Hong's bound) O(nz).
Bit-size of the quantities added L + nlogqo+ - - - +nlogq;.
Cost is O(N?M(L +nlogqo+ - -- +nlogg;)); M(p) is the cost of
multiplying two p-bit integers.

e We can show S jloggi = O(nL).
e Thus worst-case complexity of a node assuming fast integer arithmetic is

O(nL).
Cannot use asymptotically fast Taylor shifts [vzGathen/Gerhard, 1997]. J
Combined with our worst-case bound 6(n3L) on tree-size. J
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Main Result

Theorem

For a square-free integer polynomial of degree n, and coefficients of
bit-length L, the worst-case running time of Akritas’ algorithm is
bounded by O(n’L?).

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation — Continued Fractions

23/28



Expected Complexity, [Tsigaridas/Emiris, 2006]

The size of the tree
e Assumes floor of the smallest positive root can be computed in O(1).
o Number of Taylor shifts ~ Number of inversion transformations.
e So the size of the tree is O(nL).
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Expected Complexity, [Tsigaridas/Emiris, 2006]

The size of the tree
e Assumes floor of the smallest positive root can be computed in O(1).
o Number of Taylor shifts ~ Number of inversion transformations.
e So the size of the tree is O(nL).

Expected complexity of a node

e From Khinchin’s result we know E[z}:ologqj] =i+1=0(nL).

« Expected cost at a node is O("?°M(L+ny]_b;)) = O(nL).
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Expected Complexity, [Tsigaridas/Emiris, 2006]

The size of the tree
e Assumes floor of the smallest positive root can be computed in O(1).
o Number of Taylor shifts ~ Number of inversion transformations.
e So the size of the tree is O(nL).

Expected complexity of a node
e From Khinchin’s result we know E[z}:ologqj] =i+1=0(nL).
« Expected cost at a node is O("?°M(L+ny]_b;)) = O(nL).

Theorem

Expected running time of Akritas’ algorithm:
° 6(n5L2) using classical Taylor shifts with fast integer arithmetic,
o O(n*L2) using asymptotically fast Taylor shifts.
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Comparison with the Descartes method

Input: A(X) € R[X] of degree n, and (c,d).
Output: Isolating intervals for roots of A(X) in (c,d).
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Comparison with the Descartes method

Input: A(X) € R[X] of degree n, and (c,d).
Output: Isolating intervals for roots of A(X) in (c,d).

Estimate on the number of roots, E(A, (c,d))

Let A(X) = 31 oa () (X—¢)'(d—X)"'(d—c) ™"
E(A, (c,d)):= #(sign variations in (an,an_1,--.,80)).

e If E(A,(c,d)) = 0then A(X) has no roots in (c,d).
e IfE(A, (c,d)) = 1then A(X) has one root in (c,d).
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Comparison with the Descartes method
Input: A(X) € R[X] of degree n, and (c,d).

Output: Isolating intervals for roots of A(X) in (c,d).

Estimate on the number of roots, E(A, (c,d))
Let A(X) = 31 oa () (X—¢)'(d—X)"'(d—c) ™"

E(A, (c,d)):= #(sign variations in (an,an_1,--.,80)).

e If E(A,(c,d)) = 0then A(X) has no roots in (c,d).
e IfE(A, (c,d)) = 1then A(X) has one root in (c,d).

Descartes(A, (c,d))
e If E(A, (c,d)) =Oreturn.
e IfE(A,(c,d)) = 1output (c,d).
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Input: A(X) € R[X] of degree n, and (c,d).
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Estimate on the number of roots, E(A, (c,d))
Let A(X) = 31 oa () (X—¢)'(d—X)"'(d—c) ™"

E(A, (c,d)):= #(sign variations in (an,an_1,--.,80)).

e If E(A,(c,d)) = 0then A(X) has no roots in (c,d).
e IfE(A, (c,d)) = 1then A(X) has one root in (c,d).

Descartes(A, (c,d))
e If E(A, (c,d)) =Oreturn.
e If E(A, (c,d)) = 1output (c.d).
e If m:=(c+d)/2is aroot of A(X) output [m,m|.
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Comparison with the Descartes method
Input: A(X) € R[X] of degree n, and (c,d).

Output: Isolating intervals for roots of A(X) in (c,d).

Estimate on the number of roots, E(A, (c,d))
Let A(X) = 31 oa () (X—¢)'(d—X)"'(d—c) ™"

E(A, (c,d)):= #(sign variations in (an,an_1,--.,80)).

e If E(A,(c,d)) = 0then A(X) has no roots in (c,d).
e IfE(A, (c,d)) = 1then A(X) has one root in (c,d).

Descartes(A, (c,d))
e If E(A, (c,d)) =Oreturn.
e If E(A, (c,d)) = 1output (c.d).
e Ifm:=(c+d)/2is aroot of A(X) output [m,m|.
e Call Descartes(A, (c,m)) and Descartes(A, (m,d)).
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Comparison with the Descartes method
Input: A(X) € R[X] of degree n, and (c,d).

Output: Isolating intervals for roots of A(X) in (c,d).

Estimate on the number of roots, E(A, (c,d))
Let A(X) = 31 oa () (X—¢)'(d—X)"'(d—c) ™"

E(A, (c,d)):= #(sign variations in (an,an_1,--.,80)).

e If E(A,(c,d)) = 0then A(X) has no roots in (c,d).
e IfE(A, (c,d)) = 1then A(X) has one root in (c,d).

Descartes(A, (c,d))
e If E(A, (c,d)) =Oreturn.
e If E(A, (c,d)) = 1output (c.d).
e Ifm:=(c+d)/2is aroot of A(X) output [m,m|.
e Call Descartes(A, (c,m)) and Descartes(A, (m,d)).
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Comparison with the Descartes method

Descartes | Akritas
Complexity O(n°L?) | O(n’L?)
Size ofthetree | O(nL) | O(nL)
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Comparison with the Descartes method

Descartes | Akritas
Complexity O(n°L?) | O(n'L?)
Size ofthetree | O(nL) | O(nL)

Reasons

e Width of the interval doesn’t necessarily go down by half at each
recursion step.

e Lower bound is off by a factor of n (&9).
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Comparison with the Descartes method

Descartes | Akritas
Complexity O(n°L?) | O(n'L?)
Size of thetree | O(nL) | O(nL)

Reasons

e Width of the interval doesn’t necessarily go down by half at each

recursion step.
e Lower bound is off by a factor of n (&9).

But...

e Degree 100 Mignotte’s polynomials (X" — (aX — 1)?):

[Emiris/Tsigaridas, '06]: Descartes 7.83sec. and Akritas 0.02sec.

e Available in Mathematica.

e [Collins/Akritas, 1976]: O(n®L?); [Johnson, 1998]: O(n*L?).
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Possible ways to improve the complexity

Derive tight bounds on largest positive root of a polynomial in O(n)
operations. Bounds by [Kioustelidis, 1986; Stefanescu, 2005] are known
to be not tight. A recent bound by Akritas et al. might help.
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Possible ways to improve the complexity

Derive tight bounds on largest positive root of a polynomial in O(n)
operations. Bounds by [Kioustelidis, 1986; Stefanescu, 2005] are known
to be not tight. A recent bound by Akritas et al. might help.

Instead of using Horner’s method for computing A(X + b), scale by b and
shift by one.
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Possible ways to improve the complexity

Derive tight bounds on largest positive root of a polynomial in O(n)
operations. Bounds by [Kioustelidis, 1986; Stefanescu, 2005] are known
to be not tight. A recent bound by Akritas et al. might help.

Instead of using Horner’s method for computing A(X + b), scale by b and
shift by one.

v

Open question

For Mignotte’s polynomial X" —2(aX — 1)2, a € IN, the size of the recursion
tree is O(loga) using Zassenhaus’ bound
(the Descartes method has recursion tree size Q(nloga)).

Vikram Sharma (INRIA, Sophia-Antipolis) Real Root Isolation — Continued Fractions 26/28



Summary

Main Result
For a square-free polynomial A(X), degree n, and coefficient bit-length L:
Worst case bit-complexity of Akritas’ algorithm is O(n”L2).
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Summary

Main Result

For a square-free polynomial A(X), degree n, and coefficient bit-length L:
Worst case bit-complexity of Akritas’ algorithm is O(n”L2).
Worst case number of Taylor shifts — O(n3L).
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Summary

Main Result

For a square-free polynomial A(X), degree n, and coefficient bit-length L:
Worst case bit-complexity of Akritas’ algorithm is O(n”L2).
Worst case number of Taylor shifts — O(n3L).

Using a bound by Hong to compute the floor of the smallest positive root
(instead of assuming that it can be done in constant time).
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Summary

Main Result

For a square-free polynomial A(X), degree n, and coefficient bit-length L:
Worst case bit-complexity of Akritas’ algorithm is 6(n7L2).
Worst case number of Taylor shifts — O(n3L).

Using a bound by Hong to compute the floor of the smallest positive root
(instead of assuming that it can be done in constant time).

Using Davenport’s bound to amortize the bit-size of continued fractions
(instead of using Khinchin’s result).
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Summary

Main Result

For a square-free polynomial A(X), degree n, and coefficient bit-length L:
Worst case bit-complexity of Akritas’ algorithm is 6(n7L2).
Worst case number of Taylor shifts — O(n3L).

Using a bound by Hong to compute the floor of the smallest positive root
(instead of assuming that it can be done in constant time).

Using Davenport’s bound to amortize the bit-size of continued fractions
(instead of using Khinchin’s result).

Paper is available from http://www.cs.nyu.edu/sharma/pap/. )
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Merci!

Vikram Sharma (INRIA, Sophia-Antipolis)



