Complexity of Real Root Isolation Using Continued Fractions

Vikram Sharma

Project GALAAD
INRIA, Sophia-Antipolis

Real Root Isolation

Let $A(X)$ be a polynomial with coefficients in \mathbb{R}.

Real Root Isolation

Let $A(X)$ be a polynomial with coefficients in \mathbb{R}.

Real Root Isolation

Let $A(X)$ be a polynomial with coefficients in \mathbb{R}.

Real Root Isolation

Let $A(X)$ be a polynomial with coefficients in \mathbb{R}.

Fundamental Task

Computer Algebra, Computational Geometry, Quantifier Elimination etc.

Real Root Isolation

Let $A(X)$ be a polynomial with coefficients in \mathbb{R}.

Fundamental Task

Computer Algebra, Computational Geometry, Quantifier Elimination etc.
$A(X)$ is a square-free polynomial of degree n.

A General Subdivision Algorithm for Real Root Isolation

A General Subdivision Algorithm for Real Root Isolation

Estimate on number of real roots

- $E(A,(c, d))$ an upper bound on number of real roots of $A(X)$ in (c, d).
- If $E(A,(c, d))=1$ then there is exactly one real root of $A(X)$ in (c, d).

A General Subdivision Algorithm for Real Root Isolation

Estimate on number of real roots

- $E(A,(c, d))$ an upper bound on number of real roots of $A(X)$ in (c, d).
- If $E(A,(c, d))=1$ then there is exactly one real root of $A(X)$ in (c, d).

Input: Polynomial $A(X) \in \mathbb{R}[X]$ and $(c, d) \subseteq \mathbb{R}$.
Output: List of isolating intervals for real roots of $A(X)$ in (c, d).

A General Subdivision Algorithm for Real Root Isolation

Estimate on number of real roots

- $E(A,(c, d))$ an upper bound on number of real roots of $A(X)$ in (c, d).
- If $E(A,(c, d))=1$ then there is exactly one real root of $A(X)$ in (c, d).

Input: Polynomial $A(X) \in \mathbb{R}[X]$ and $(c, d) \subseteq \mathbb{R}$.
Output: List of isolating intervals for real roots of $A(X)$ in (c, d).
$\operatorname{RootIsol}(A,(c, d))$
1 If $E(A,(c, d))=0$ return.
2 If $E(A,(c, d))=1$ output (c, d).
3 Partition (c, d) into two intervals I, J.
$4 \operatorname{RootIsol}(A, I)$ and RootIsol($A, J)$.

A General Subdivision Algorithm for Real Root Isolation

Estimate on number of real roots

- $E(A,(c, d))$ an upper bound on number of real roots of $A(X)$ in (c, d).
- If $E(A,(c, d))=1$ then there is exactly one real root of $A(X)$ in (c, d).

Input: Polynomial $A(X) \in \mathbb{R}[X]$ and $(c, d) \subseteq \mathbb{R}$.
Output: List of isolating intervals for real roots of $A(X)$ in (c, d).
$\operatorname{RootIsol}(A,(c, d))$
1 If $E(A,(c, d))=0$ return.
2 If $E(A,(c, d))=1$ output (c, d).
3 Partition (c, d) into two intervals I, J.
$4 \operatorname{RootIsol}(A, I)$ and RootIsol($A, J)$.

How to implement $E(A,(c, d))$?

Two Varieties of Real Root Isolation Algorithm

Sturm Sequences

$1 E(A,(c, d))$ is computed from the Sturm sequence of $A(X), A^{\prime}(X)$.
$2 E(A,(c, d))=$ number of real roots of $A(X)$ in (c, d).

Two Varieties of Real Root Isolation Algorithm

Sturm Sequences

$1 E(A,(c, d))$ is computed from the Sturm sequence of $A(X), A^{\prime}(X)$.
$2 E(A,(c, d))=$ number of real roots of $A(X)$ in (c, d).

The Descartes' Rule of Signs

$1 E(A,(c, d))=$ sign variation in the Bernstein coeffs. of $A(X)$ w.r.t. (c, d).
$2 E(A,(c, d)) \geq$ number of real roots of $A(X)$ in (c, d) by a +ve even number.

Two Varieties of Real Root Isolation Algorithm

Sturm Sequences

$1 E(A,(c, d))$ is computed from the Sturm sequence of $A(X), A^{\prime}(X)$.
$2 E(A,(c, d))=$ number of real roots of $A(X)$ in (c, d).

The Descartes' Rule of Signs

$1 E(A,(c, d))=$ sign variation in the Bernstein coeffs. of $A(X)$ w.r.t. (c, d).
$2 E(A,(c, d)) \geq$ number of real roots of $A(X)$ in (c, d) by a +ve even number. In practice, the second approach is more efficient than the first one.

Vincent's Theorem, 1836

Transform $A(X)$ as follows:

Vincent's Theorem, 1836

Transform $A(X)$ as follows:

$$
A(X) \rightarrow X^{n} A\left(a_{0}+\frac{1}{X}\right)
$$

$$
a_{0} \in \mathbb{N}_{\geq 0},
$$

Vincent's Theorem, 1836

Transform $A(X)$ as follows:

$$
A(X) \rightarrow X^{n} A\left(a_{0}+\frac{1}{X}\right) \rightarrow\left(a_{1} X+1\right)^{n} A\left(a_{0}+\frac{1}{a_{1}+\frac{1}{X}}\right)
$$

$a_{0} \in \mathbb{N}_{\geq 0}, a_{1} \in \mathbb{N}_{>0}$,

Vincent's Theorem, 1836

Transform $A(X)$ as follows:

$$
\begin{aligned}
A(X) \rightarrow & X^{n} A\left(a_{0}+\frac{1}{X}\right) \rightarrow\left(a_{1} X+1\right)^{n} A\left(a_{0}+\frac{1}{a_{1}+\frac{1}{X}}\right) \\
& \rightarrow\left(a_{1} a_{2} X+a_{1}+1\right)^{n} A\left(a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{X}}}\right)
\end{aligned}
$$

$a_{0} \in \mathbb{N}_{\geq 0}, a_{1} \in \mathbb{N}_{>0}, a_{2} \in \mathbb{N}_{>0}$.

Vincent's Theorem, 1836

Transform $A(X)$ as follows:

$$
\begin{aligned}
& A(X) \rightarrow X^{n} A\left(a_{0}+\frac{1}{X}\right) \rightarrow\left(a_{1} X+1\right)^{n} A\left(a_{0}+\frac{1}{a_{1}+\frac{1}{X}}\right) \\
& \rightarrow\left(a_{1} a_{2} X+a_{1}+1\right)^{n} A\left(a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{X}}}\right) \rightarrow \cdots \\
& a_{0} \in \mathbb{N}_{\geq 0}, a_{1} \in \mathbb{N}_{>0}, a_{2} \in \mathbb{N}_{>0} .
\end{aligned}
$$

Vincent's Theorem, 1836

Transform $A(X)$ as follows:

$$
\begin{aligned}
& A(X) \rightarrow X^{n} A\left(a_{0}+\frac{1}{X}\right) \rightarrow\left(a_{1} X+1\right)^{n} A\left(a_{0}+\frac{1}{a_{1}+\frac{1}{X}}\right) \\
& \rightarrow\left(a_{1} a_{2} X+a_{1}+1\right)^{n} A\left(a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{X}}}\right) \rightarrow \cdots \\
& a_{0} \in \mathbb{N}_{\geq 0}, a_{1} \in \mathbb{N}_{>0}, a_{2} \in \mathbb{N}_{>0} .
\end{aligned}
$$

Resulting polynomial has at most one sign variation in its coefficients.

Vincent's Theorem, 1836

Transform $A(X)$ as follows:

$$
\begin{aligned}
& A(X) \rightarrow X^{n} A\left(a_{0}+\frac{1}{X}\right) \rightarrow\left(a_{1} X+1\right)^{n} A\left(a_{0}+\frac{1}{a_{1}+\frac{1}{X}}\right) \\
& \rightarrow\left(a_{1} a_{2} X+a_{1}+1\right)^{n} A\left(a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{X}}}\right) \rightarrow \cdots \\
& a_{0} \in \mathbb{N}_{\geq 0}, a_{1} \in \mathbb{N}_{>0}, a_{2} \in \mathbb{N}_{>0} .
\end{aligned}
$$

Resulting polynomial has at most one sign variation in its coefficients.

Let $\operatorname{Var}(A)$ be the number of sign variations in the coefficients of $A(X)$.

We want to isolate the positive roots of $A(X)$.

Construct $A_{R}(X):=A(X+1), M_{R}(X):=X+1$. Check if $\operatorname{Var}\left(A_{R}\right)$ is 0 or 1 .

Construct $A_{L}(X):=(X+1)^{n} A\left(\frac{1}{X+1}\right), M_{L}(X):=(X+1)^{-1}$.

Check if $\operatorname{Var}\left(A_{L}\right)$ is 0 or 1 .

Construct $A_{R R}(X):=A_{R}(X+1)=A(X+2), M_{R R}(X):=X+2$.

Check if $\operatorname{Var}\left(A_{R R}\right)$ is 0 or 1 .

Construct $A_{R L}(X):=A_{R}\left(\frac{1}{1+X}\right)=A\left(1+\frac{1}{1+X}\right)$ and $M_{R L}(X):=1+\frac{1}{X+1}$.

Check $\operatorname{Var}\left(A_{R L}\right)$.

$$
A_{L R}(X)=A_{L}(X+1)=(X+2)^{n} A\left(1+\frac{1}{2+X}\right), M_{L R}(X):=(X+2)^{-1}
$$

$$
\operatorname{Var}\left(A_{L R}\right)=1, \text { return } M_{L R}(0)=\frac{1}{2}, M_{L R}(\infty)=0
$$

$$
A_{R L}(X):=(X+1)^{n} A_{L}\left(\frac{1}{1+X}\right)=(X+2)^{n} A\left(\frac{1}{1+\frac{1}{1+X}}\right), M_{L R}(X):=\frac{X+1}{X+2}
$$

$\operatorname{Var}\left(A_{R L}\right)=1$, return $M_{R L}(0)=\frac{1}{2}, M_{R L}(\infty)=1$

Continue recursively at each level

This was Uspensky's algorithm [Uspensky, 1948].

Vincent's Algorithm for Isolating Positive Roots

We want to isolate the positive roots of $A(X)$.

Vincent's Algorithm for Isolating Positive Roots

Construct $A_{R}(X):=A(X+1), M_{R}(X):=X+1$ and check if $\operatorname{Var}\left(A_{R}\right)$ is 0 or 1 .

Vincent's Algorithm for Isolating Positive Roots

$$
\text { Is } \operatorname{Var}\left(A_{R}\right)<\operatorname{Var}(A) ?
$$

Vincent's Algorithm for Isolating Positive Roots

Construct $A_{L}(X):=(X+1)^{n} A\left(\frac{1}{X+1}\right), M_{L}(X):=(X+1)^{-1}$.

Vincent's Algorithm for Isolating Positive Roots

Continue recursively at each level

Vincent's Algorithm for Isolating Positive Roots

If $\operatorname{Var}\left(A_{R}\right)=\operatorname{Var}(A)$ then don't construct $A_{L}(X)$.

Vincent's Algorithm for Isolating Positive Roots

But proceed recursively from $A_{R}(X)$.

Vincent's Algorithm for Isolating Positive Roots

If $\operatorname{Var}\left(A_{R}\right)=\operatorname{Var}(A)$ then don't construct $A_{L}(X)$.

Budan-Fourier

$$
\#(\text { roots in }(0,1)) \leq \operatorname{Var}(A(X))-\operatorname{Var}(A(X+1))=\operatorname{Var}(A)-\operatorname{Var}\left(A_{R}\right)
$$

Drawback of Vincent's Algorithm

Exponential running time

- Consider the polynomial $A(X)=\left(X-2^{L}\right)\left(X-2^{L}-1\right)$.

Drawback of Vincent's Algorithm

Exponential running time

- Consider the polynomial $A(X)=\left(X-2^{L}\right)\left(X-2^{L}-1\right)$.
- At depth i on the right most path the polynomial is

$$
A(X+i)=\left(X-\left(2^{L}-i\right)\right)\left(X-\left(2^{L}+1-i\right)\right)
$$

Drawback of Vincent's Algorithm

Exponential running time

- Consider the polynomial $A(X)=\left(X-2^{L}\right)\left(X-2^{L}-1\right)$.
- At depth i on the right most path the polynomial is

$$
A(X+i)=\left(X-\left(2^{L}-i\right)\right)\left(X-\left(2^{L}+1-i\right)\right) .
$$

- To get the smallest positive root of $A(X)$ in the unit interval $i \geq 2^{L}$.

Drawback of Vincent's Algorithm

Exponential running time

- Consider the polynomial $A(X)=\left(X-2^{L}\right)\left(X-2^{L}-1\right)$.
- At depth i on the right most path the polynomial is

$$
A(X+i)=\left(X-\left(2^{L}-i\right)\right)\left(X-\left(2^{L}+1-i\right)\right)
$$

- To get the smallest positive root of $A(X)$ in the unit interval $i \geq 2^{L}$.

Two Solutions

- [Collins/Akritas,1976]: Bisect the interval at each recursion level.

Drawback of Vincent's Algorithm

Exponential running time

- Consider the polynomial $A(X)=\left(X-2^{L}\right)\left(X-2^{L}-1\right)$.
- At depth i on the right most path the polynomial is

$$
A(X+i)=\left(X-\left(2^{L}-i\right)\right)\left(X-\left(2^{L}+1-i\right)\right)
$$

- To get the smallest positive root of $A(X)$ in the unit interval $i \geq 2^{L}$.

Two Solutions

- [Collins/Akritas,1976]: Bisect the interval at each recursion level.
- [Akritas,1978]: Can we do better than shifts by unit length? Idea: Use a lower bound on the smallest positive root.

Drawback of Vincent's Algorithm

Exponential running time

- Consider the polynomial $A(X)=\left(X-2^{L}\right)\left(X-2^{L}-1\right)$.
- At depth i on the right most path the polynomial is

$$
A(X+i)=\left(X-\left(2^{L}-i\right)\right)\left(X-\left(2^{L}+1-i\right)\right)
$$

- To get the smallest positive root of $A(X)$ in the unit interval $i \geq 2^{L}$.

Two Solutions

- [Collins/Akritas,1976]: Bisect the interval at each recursion level.
- [Akritas,1978]: Can we do better than shifts by unit length? Idea: Use a lower bound on the smallest positive root.

Advantages of Akritas' approach

- Faster in practice.
- Utilises distribution of roots.
- Computes the continued fraction approximation of the roots.

Akritas’ Algorithm

Input: Polynomial $A(X)$ of degree n whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of $A(X)$.

Akritas' Algorithm

Input: Polynomial $A(X)$ of degree n whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of $A(X)$.

RootIsol(A,M)

- If $\operatorname{Var}(A)=0$ return.

Akritas' Algorithm

Input: Polynomial $A(X)$ of degree n whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of $A(X)$.

RootIsol(A,M)

- If $\operatorname{Var}(A)=0$ return.
- If $\operatorname{Var}(A)=1$ output the interval with end points $M(0), M(\infty)$.

Akritas' Algorithm

Input: Polynomial $A(X)$ of degree n whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of $A(X)$.

RootIsol($A, M)$

- If $\operatorname{Var}(A)=0$ return.
- If $\operatorname{Var}(A)=1$ output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound B on the positive roots of $A(X)$.

Akritas’ Algorithm

Input: Polynomial $A(X)$ of degree n whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of $A(X)$.

RootIsol($A, M)$

- If $\operatorname{Var}(A)=0$ return.
- If $\operatorname{Var}(A)=1$ output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound B on the positive roots of $A(X)$.
- If $B \geq 1$ then $A(X):=A(X+B), M(X):=M(X+B)$.

Akritas’ Algorithm

Input: Polynomial $A(X)$ of degree n whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of $A(X)$.

RootIsol(A,M)

- If $\operatorname{Var}(A)=0$ return.
- If $\operatorname{Var}(A)=1$ output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound B on the positive roots of $A(X)$.
- If $B \geq 1$ then $A(X):=A(X+B), M(X):=M(X+B)$.
- Compute $A_{R}(X):=A(X+1)$ and $M_{R}(X):=M(X+1)$.

Akritas’ Algorithm

Input: Polynomial $A(X)$ of degree n whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of $A(X)$.

RootIsol(A,M)

- If $\operatorname{Var}(A)=0$ return.
- If $\operatorname{Var}(A)=1$ output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound B on the positive roots of $A(X)$.
- If $B \geq 1$ then $A(X):=A(X+B), M(X):=M(X+B)$.
- Compute $A_{R}(X):=A(X+1)$ and $M_{R}(X):=M(X+1)$.
- If $\operatorname{Var}\left(A_{R}\right)<\operatorname{Var}(A)$ then $A_{L}(X):=(X+1)^{n} A\left(\frac{1}{X+1}\right), M_{L}(X):=M\left(\frac{1}{X+1}\right)$.

Akritas’ Algorithm

Input: Polynomial $A(X)$ of degree n whose coefficients are real numbers. Output: List of isolating intervals for the positive roots of $A(X)$.

RootIsol(A,M)

- If $\operatorname{Var}(A)=0$ return.
- If $\operatorname{Var}(A)=1$ output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound B on the positive roots of $A(X)$.
- If $B \geq 1$ then $A(X):=A(X+B), M(X):=M(X+B)$.
- Compute $A_{R}(X):=A(X+1)$ and $M_{R}(X):=M(X+1)$.
- If $\operatorname{Var}\left(A_{R}\right)<\operatorname{Var}(A)$ then $A_{L}(X):=(X+1)^{n} A\left(\frac{1}{X+1}\right), M_{L}(X):=M\left(\frac{1}{X+1}\right)$.
- RootIsol $\left(A_{R}, M_{R}\right)$ and RootIsol $\left(A_{L}, M_{L}\right)$.

Worst case bit-complexity of Akritas' algorithm?

Worst case bit-complexity of Akritas' algorithm?

Two steps for getting the worst-case bounds
1 Bound the worst-case size of the recursion tree:

- number of inversion transformations, $X \rightarrow(X+1)^{-1}$ and
- number of Taylor shifts.

2 Bound the worst-case complexity of a node in the recursion tree.

Worst case bit-complexity of Akritas' algorithm?

Two steps for getting the worst-case bounds
1 Bound the worst-case size of the recursion tree:

- number of inversion transformations, $X \rightarrow(X+1)^{-1}$ and
- number of Taylor shifts.

2 Bound the worst-case complexity of a node in the recursion tree.
Akritas' worst case bit-complexity
For $A(X) \in \mathbb{Z}[X]$, degree n, coefficients of bit-length $L-\widetilde{O}\left(n^{4} L^{2}\right)$:

- number of inversion transformations and Taylor shifts $-\widetilde{O}\left(n^{2} L\right)$.
- worst case bit-complexity of a node using fast integer arithmetic $\widetilde{O}\left(n^{2} L\right)$.

Worst case bit-complexity of Akritas' algorithm?

Two steps for getting the worst-case bounds
1 Bound the worst-case size of the recursion tree:

- number of inversion transformations, $X \rightarrow(X+1)^{-1}$ and
- number of Taylor shifts.

2 Bound the worst-case complexity of a node in the recursion tree.
Akritas' worst case bit-complexity
For $A(X) \in \mathbb{Z}[X]$, degree n, coefficients of bit-length $L-\widetilde{O}\left(n^{4} L^{2}\right)$:

- number of inversion transformations and Taylor shifts $-\widetilde{O}\left(n^{2} L\right)$.
- worst case bit-complexity of a node using fast integer arithmetic $\widetilde{O}\left(n^{2} L\right)$.

Drawbacks

- Assumes floor of the smallest positive root can be computed in $O(1)$.
- Assumes Taylor shifts don't increase the bit-size.

Worst case bit-complexity of Akritas' algorithm?

Two steps for getting the worst-case bounds
1 Bound the worst-case size of the recursion tree:

- number of inversion transformations, $X \rightarrow(X+1)^{-1}$ and
- number of Taylor shifts.

2 Bound the worst-case complexity of a node in the recursion tree.
Akritas' worst case bit-complexity
For $A(X) \in \mathbb{Z}[X]$, degree n, coefficients of bit-length $L-\widetilde{O}\left(n^{4} L^{2}\right)$:

- number of inversion transformations and Taylor shifts $-\widetilde{O}\left(n^{2} L\right)$.
- worst case bit-complexity of a node using fast integer arithmetic $\widetilde{O}\left(n^{2} L\right)$.

Our worst case bit-complexity
Worst case bit-complexity is $\widetilde{O}\left(n^{7} L^{2}\right)$:

- number of inversion transformations $\widetilde{O}(n L)$; no. of Taylor shifts $\widetilde{O}\left(n^{3} L\right)$.

Akritas' Algorithm

RootIsol(A,M)

- If $\operatorname{Var}(A)=0$ return.
- If $\operatorname{Var}(A)=1$ output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound B on the positive roots of $A(X)$.
- If $B \geq 1$ then $A(X):=A(X+B), M(X):=M(X+B)$.
- Compute $A_{R}(X):=A(X+1)$ and $M_{R}(X):=M(X+1)$.
- If $\operatorname{Var}\left(A_{R}\right)<\operatorname{Var}(A)$ then $A_{L}(X):=(X+1)^{n} A\left(\frac{1}{X+1}\right), M_{L}(X):=M\left(\frac{1}{X+1}\right)$.
- RootIsol $\left(A_{R}, M_{R}\right)$ and $\operatorname{RootIsol}\left(A_{L}, M_{L}\right)$.
- What are the transformations M_{R}, M_{L} ?
- What is the relation between A_{R}, A_{L} and the input polynomial?

The transformation associated with a node in the tree

The transformation associated with a node in the tree

- Transformation associated with root is X.

The transformation associated with a node in the tree

- Transformation associated with root is X.
- Do a Taylor shift $X \rightarrow X+a$.

The transformation associated with a node in the tree

- Transformation associated with root is X.
- Do a Taylor shift $X \rightarrow X+a$.
- Then the transformation $X \rightarrow \frac{1}{1+X}$.

The transformation associated with a node in the tree

- Transformation associated with root is X.
- Do a Taylor shift $X \rightarrow X+a$.
- Then the transformation $X \rightarrow \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X+b_{0}$.

The transformation associated with a node in the tree

- Transformation associated with root is X.
- Do a Taylor shift $X \rightarrow X+a$.
- Then the transformation $X \rightarrow \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X+b_{0}$.
- Again a Taylor shift by $X \rightarrow X+b_{1}$.

The transformation associated with a node in the tree

- Transformation associated with root is X.
- Do a Taylor shift $X \rightarrow X+a$.
- Then the transformation $X \rightarrow \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X+b_{0}$.
- Again a Taylor shift by $X \rightarrow X+b_{1}$.
- Followed by $X \rightarrow \frac{1}{1+X}$.

The transformation associated with a node in the tree

- Transformation associated with root is X.
- Do a Taylor shift $X \rightarrow X+a$.
- Then the transformation $X \rightarrow \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X+b_{0}$.
- Again a Taylor shift by $X \rightarrow X+b_{1}$.
- Followed by $X \rightarrow \frac{1}{1+X}$.
- Associated transformation is
$a+\frac{1}{1+b_{0}+b_{1}+\frac{1}{1+X}}$

The transformation associated with a node in the tree

- Transformation associated with root is X.
- Do a Taylor shift $X \rightarrow X+a$.
- Then the transformation $X \rightarrow \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X+b_{0}$.
- Again a Taylor shift by $X \rightarrow X+b_{1}$.
- Followed by $X \rightarrow \frac{1}{1+X}$.
- Associated transformation is
$a+\frac{1}{1+b_{0}+b_{1}+\frac{1}{1+X}}$
- Same as $a+\frac{1}{q+\frac{1}{1+X}}, q=1+b_{0}+b_{1}$.

The transformation associated with a node in the tree

- Transformation associated with root is X.
- Do a Taylor shift $X \rightarrow X+a$.
- Then the transformation $X \rightarrow \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X+b_{0}$.
- Again a Taylor shift by $X \rightarrow X+b_{1}$.
- Followed by $X \rightarrow \frac{1}{1+X}$.
- Associated transformation is
$a+\frac{1}{1+b_{0}+b_{1}+\frac{1}{1+X}}$

- Same as $a+\frac{1}{q+\frac{1}{1+X}}, q=1+b_{0}+b_{1}$.
- Collapse consecutive Taylor shifts into one.

The transformation associated with a node in the tree

- Transformation associated with root is X.
- Do a Taylor shift $X \rightarrow X+a$.
- Then the transformation $X \rightarrow \frac{1}{1+X}$.
- Then a Taylor shift $X \rightarrow X+b_{0}$.
- Again a Taylor shift by $X \rightarrow X+b_{1}$.
- Followed by $X \rightarrow \frac{1}{1+X}$.
- Associated transformation is
$a+\frac{1}{1+b_{0}+b_{1}+\frac{1}{1+X}}$

- Same as $a+\frac{1}{q+\frac{1}{1+X}}, q=1+b_{0}+b_{1}$.
- Collapse consecutive Taylor shifts into one.

What is the transformation in general?

The transformation associated with a node in the tree

$$
q_{0}+\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{\ddots \cdot+\frac{1}{q_{m}+X}}}}
$$

where

- m is the number of inversion transformations $\left(X \rightarrow \frac{1}{1+X}\right)$.
- $q_{0} \geq 0$ the total amount of Taylor shifts to the first inversion transformation.
- $q_{i} \geq 1$, for $i=1, \ldots, m-1$, the total amount of Taylor shifts between i-th and $i+1$-th inversion transformation; if there are no Taylor shifts $q_{i}=1$.

The transformation associated with a node in the tree

$$
q_{0}+\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{\ddots \cdot+\frac{1}{q_{m}+X}}}}
$$

where

- m is the number of inversion transformations $\left(X \rightarrow \frac{1}{1+X}\right)$.
- $q_{0} \geq 0$ the total amount of Taylor shifts to the first inversion transformation.
- $q_{i} \geq 1$, for $i=1, \ldots, m-1$, the total amount of Taylor shifts between i-th and $i+1$-th inversion transformation; if there are no Taylor shifts $q_{i}=1$.

Let i th quotient $\frac{P_{i}}{Q_{i}}$ be the finite continued fraction $q_{0}+\frac{1}{q_{1}+\frac{1}{\ddots-+\frac{1}{q_{i}}}}$.
Then $P_{i}=q_{i} P_{i-1}+P_{i-2}$ and $Q_{i}=q_{i} Q_{i-1}+Q_{i-2}$.

The transformation associated with a node in the tree

$$
q_{0}+\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{\ddots+\frac{1}{q_{m}+X}}}}=\frac{P_{m} X+P_{m-1}}{Q_{m} X+Q_{m-1}} .
$$

where

- m is the number of inversion transformations $\left(X \rightarrow \frac{1}{1+X}\right)$.
- $q_{0} \geq 0$ the total amount of Taylor shifts to the first inversion transformation.
- $q_{i} \geq 1$, for $i=1, \ldots, m-1$, the total amount of Taylor shifts between i-th and $i+1$-th inversion transformation; if there are no Taylor shifts $q_{i}=1$.

Let i th quotient $\frac{P_{i}}{Q_{i}}$ be the finite continued fraction $q_{0}+\frac{1}{q_{1}+\frac{1}{\ddots \cdot+\frac{1}{q_{i}}}}$.
Then $P_{i}=q_{i} P_{i-1}+P_{i-2}$ and $Q_{i}=q_{i} Q_{i-1}+Q_{i-2}$.

Two additional features associated with a node in the tree

The transformation associated with a node
Let m be the number of inversion transformations along the path and

$$
M(X):=\frac{P_{m} X+P_{m-1}}{Q_{m} X+Q_{m-1}}
$$

Two additional features associated with a node in the tree

The transformation associated with a node
Let m be the number of inversion transformations along the path and

$$
M(X):=\frac{P_{m} X+P_{m-1}}{Q_{m} X+Q_{m-1}}
$$

The two features

- Polynomial $A_{m}(X):=\left(Q_{m} X+Q_{m-1}\right)^{n} A(M(X))$.

Two additional features associated with a node in the tree

The transformation associated with a node
Let m be the number of inversion transformations along the path and

$$
M(X):=\frac{P_{m} X+P_{m-1}}{Q_{m} X+Q_{m-1}}
$$

The two features

- Polynomial $A_{m}(X):=\left(Q_{m} X+Q_{m-1}\right)^{n} A(M(X))$.
- Interval I_{m} that has end-points $M(0)=\frac{P_{m-1}}{Q_{m-1}}, M(\infty)=\frac{P_{m}}{Q_{m}}$.

$$
\text { Note: Width of } I_{m} \text { is }\left|\frac{P_{m}}{Q_{m}}-\frac{P_{m-1}}{Q_{m-1}}\right|=\left(Q_{m} Q_{m-1}\right)^{-1} \text {. }
$$

Two additional features associated with a node in the tree

The transformation associated with a node
Let m be the number of inversion transformations along the path and

$$
M(X):=\frac{P_{m} X+P_{m-1}}{Q_{m} X+Q_{m-1}}
$$

The two features

- Polynomial $A_{m}(X):=\left(Q_{m} X+Q_{m-1}\right)^{n} A(M(X))$.
- Interval I_{m} that has end-points $M(0)=\frac{P_{m-1}}{Q_{m-1}}, M(\infty)=\frac{P_{m}}{Q_{m}}$.

$$
\text { Note: Width of } I_{m} \text { is }\left|\frac{P_{m}}{Q_{m}}-\frac{P_{m-1}}{Q_{m-1}}\right|=\left(Q_{m} Q_{m-1}\right)^{-1} \text {. }
$$

The positive roots of $A_{m}(X) \Leftrightarrow$ Roots of $A(X)$ in I_{m}. $\operatorname{Var}\left(A_{m}\right)=\#\left(\right.$ number of roots of $A(X)$ in $\left.I_{m}\right)+$ even number.

Two additional features associated with a node in the tree

The transformation associated with a node
Let m be the number of inversion transformations along the path and

$$
M(X):=\frac{P_{m} X+P_{m-1}}{Q_{m} X+Q_{m-1}}
$$

The two features

- Polynomial $A_{m}(X):=\left(Q_{m} X+Q_{m-1}\right)^{n} A(M(X))$.
- Interval I_{m} that has end-points $M(0)=\frac{P_{m-1}}{Q_{m-1}}, M(\infty)=\frac{P_{m}}{Q_{m}}$.

$$
\text { Note: Width of } I_{m} \text { is }\left|\frac{P_{m}}{Q_{m}}-\frac{P_{m-1}}{Q_{m-1}}\right|=\left(Q_{m} Q_{m-1}\right)^{-1} \text {. }
$$

The positive roots of $A_{m}(X) \Leftrightarrow$ Roots of $A(X)$ in I_{m}. $\operatorname{Var}\left(A_{m}\right)=\#\left(\right.$ number of roots of $A(X)$ in $\left.I_{m}\right)+$ even number.

When does the algorithm terminate? When is $\operatorname{Var}\left(A_{m}\right) \leq 1$?

Termination Criterion: Two-Circle Theorem

Two-circle Theorem ([Ostrowski, 1950])
If the two-circles figure w.r.t. I_{m} contains a single root of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=1$; if no roots of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=0$.

Termination Criterion: Two-Circle Theorem

Two-circle Theorem ([Ostrowski, 1950])
 If the two-circles figure w.r.t. I_{m} contains a single root of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=1$; if no roots of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=0$.

Contrapositive

If $\operatorname{Var}\left(A_{m}\right) \geq 2$, then the two-circles figure in \mathbb{C} w.r.t. interval I_{m} contains two roots α, β of $A(X)$.

Termination Criterion: Two-Circle Theorem

> Two-circle Theorem ([Ostrowski, 1950])
> If the two-circles figure w.r.t. I_{m} contains a single root of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=1$; if no roots of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=0$.

Contrapositive

If $\operatorname{Var}\left(A_{m}\right) \geq 2$, then the two-circles figure in \mathbb{C} w.r.t. interval I_{m} contains two roots α, β of $A(X)$.

Corollary

We can choose a pair α, β of roots inside the two-circles such that

Termination Criterion: Two-Circle Theorem

> Two-circle Theorem ([Ostrowski, 1950])
> If the two-circles figure w.r.t. I_{m} contains a single root of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=1$; if no roots of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=0$.

Contrapositive

If $\operatorname{Var}\left(A_{m}\right) \geq 2$, then the two-circles figure in \mathbb{C} w.r.t. interval I_{m} contains two roots α, β of $A(X)$.

Corollary

We can choose a pair α, β of roots inside the two-circles such that
$|\beta-\alpha|<\sqrt{3}\left|I_{m}\right|$

Termination Criterion: Two-Circle Theorem

> Two-circle Theorem ([Ostrowski, 1950])
> If the two-circles figure w.r.t. I_{m} contains a single root of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=1$; if no roots of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=0$.

Contrapositive

If $\operatorname{Var}\left(A_{m}\right) \geq 2$, then the two-circles figure in \mathbb{C} w.r.t. interval I_{m} contains two roots α, β of $A(X)$.

Corollary

We can choose a pair α, β of roots inside the two-circles such that
$|\beta-\alpha|<\sqrt{3}\left|I_{m}\right|$, but $\left|I_{m}\right|=\left|\frac{P_{m}}{Q_{m}}-\frac{P_{m-1}}{Q_{m-1}}\right|=\frac{1}{Q_{m} Q_{m-1}}$. Thus

Termination Criterion: Two-Circle Theorem

Two-circle Theorem ([Ostrowski, 1950])
If the two-circles figure w.r.t. I_{m} contains a single root of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=1$; if no roots of $A(X)$ then $\operatorname{Var}\left(A_{m}\right)=0$.

Contrapositive

If $\operatorname{Var}\left(A_{m}\right) \geq 2$, then the two-circles figure in \mathbb{C} w.r.t. interval I_{m} contains two roots α, β of $A(X)$.

Corollary

We can choose a pair α, β of roots inside the two-circles such that
$|\beta-\alpha|<\sqrt{3}\left|I_{m}\right|$, but $\left|I_{m}\right|=\left|\frac{P_{m}}{Q_{m}}-\frac{P_{m-1}}{Q_{m-1}}\right|=\frac{1}{Q_{m} Q_{m-1}}$. Thus

$$
\text { If } \operatorname{Var}\left(A_{m}\right) \geq 2 \text { then } \frac{1}{Q_{m} Q_{m-1}}>|\beta-\alpha| / \sqrt{3} \text {. }
$$

Number of Inversion Transformations along a path to a leaf

1 A path in the recursion tree of $\operatorname{RootIsol}(A, X)$, from the root to a parent J of two leaves. Let m be the number of inversion transformations along the path.

Number of Inversion Transformations along a path to a leaf

1 A path in the recursion tree of RootIsol (A, X), from the root to a parent J of two leaves. Let m be the number of inversion transformations along the path.
2 Let I_{m} be the interval associated with J.

Number of Inversion Transformations along a path to a leaf

1 A path in the recursion tree of RootIsol (A, X), from the root to a parent J of two leaves. Let m be the number of inversion transformations along the path.
2 Let I_{m} be the interval associated with J.
3 Since $\operatorname{Var}\left(A_{m}\right) \geq 2$, there is a pair of roots $\left(\alpha_{J}, \beta_{J}\right)$ of $A(X)$ such that $\left|I_{m}\right|=\frac{1}{Q_{m} Q_{m-1}} \geq\left|\beta_{J}-\alpha_{J}\right| / \sqrt{3}$.

Number of Inversion Transformations along a path to a leaf

1 A path in the recursion tree of RootIsol (A, X), from the root to a parent J of two leaves. Let m be the number of inversion transformations along the path.
2 Let I_{m} be the interval associated with J.
3 Since $\operatorname{Var}\left(A_{m}\right) \geq 2$, there is a pair of roots $\left(\alpha_{J}, \beta_{J}\right)$ of $A(X)$ such that $\left|I_{m}\right|=\frac{1}{Q_{m} Q_{m-1}} \geq\left|\beta_{J}-\alpha_{J}\right| / \sqrt{3}$.
4 But $Q_{m}=q_{m} Q_{m-1}+Q_{m-2} \geq$ $Q_{m-1}+Q_{m-2} \geq F_{m} \geq \phi^{m-1}$.

Number of Inversion Transformations along a path to a leaf

1 A path in the recursion tree of RootIsol (A, X), from the root to a parent J of two leaves. Let m be the number of inversion transformations along the path.
2 Let I_{m} be the interval associated with J.
3 Since $\operatorname{Var}\left(A_{m}\right) \geq 2$, there is a pair of roots (α_{J}, β_{J}) of $A(X)$ such that $\left|I_{m}\right|=\frac{1}{Q_{m} Q_{m-1}} \geq\left|\beta_{J}-\alpha_{J}\right| / \sqrt{3}$.
4 But $Q_{m}=q_{m} Q_{m-1}+Q_{m-2} \geq$
$Q_{m-1}+Q_{m-2} \geq F_{m} \geq \phi^{m-1}$.
5 Thus $m \leq 2-\log _{\phi}\left|\beta_{J}-\alpha_{J}\right|$.
6 This was shown by Uspensky and Ostrowski.

Number of Inversion Transformations along a path to a leaf

1 A path in the recursion tree of

Proposition

The total number of inversion transformations in the tree are bounded by

$$
\sum_{J}\left(2-\log _{\phi}\left|\beta_{J}-\alpha_{J}\right|\right)
$$

$$
\begin{aligned}
& \left(\alpha_{J}, \beta_{J}\right) \text { ot } A(X) \text { such that } \\
& \left|I_{m}\right|=\frac{1}{Q_{m} Q_{m-1}} \geq\left|\beta_{J}-\alpha_{J}\right| / \sqrt{3} .
\end{aligned}
$$

4 But $Q_{m}=q_{m} Q_{m-1}+Q_{m-2} \geq$
$Q_{m-1}+Q_{m-2} \geq F_{m} \geq \phi^{m-1}$.
5 Thus $m \leq 2-\log _{\phi}\left|\beta_{J}-\alpha_{J}\right|$.
6 This was shown by Uspensky and Ostrowski.

Akritas' Algorithm

RootIsol(A,M)

- If $\operatorname{Var}(A)=0$ return.
- If $\operatorname{Var}(A)=1$ output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound B on the positive roots of $A(X)$.
- If $B \geq 1$ then $A(X):=A(X+B), M(X):=M(X+B)$.
- Compute $A_{R}(X):=A(X+1)$ and $M_{R}(X):=M(X+1)$.
- If $\operatorname{Var}\left(A_{R}\right)<\operatorname{Var}(A)$ then $A_{L}(X):=(X+1)^{n} A\left(\frac{1}{X+1}\right), M_{L}(X):=M\left(\frac{1}{X+1}\right)$.
- RootIsol $\left(A_{R}, M_{R}\right)$ and RootIsol $\left(A_{L}, M_{L}\right)$.

Akritas' Algorithm

RootIsol(A,M)

- If $\operatorname{Var}(A)=0$ return.
- If $\operatorname{Var}(A)=1$ output the interval with end points $M(0), M(\infty)$.
- Compute a lower bound B on the positive roots of $A(X)$.
- If $B \geq 1$ then $A(X):=A(X+B), M(X):=M(X+B)$.
- Compute $A_{R}(X):=A(X+1)$ and $M_{R}(X):=M(X+1)$.
- If $\operatorname{Var}\left(A_{R}\right)<\operatorname{Var}(A)$ then $A_{L}(X):=(X+1)^{n} A\left(\frac{1}{X+1}\right), M_{L}(X):=M\left(\frac{1}{X+1}\right)$.
- RootIsol $\left(A_{R}, M_{R}\right)$ and RootIsol $\left(A_{L}, M_{L}\right)$.

How do we compute a lower bound on positive roots of a polynomial?

Lower Bound on the smallest positive root

One Approach

- Roots of $X^{n} A(1 / X)$ are inverse of the roots of $A(X)$.
- Compute an upper bound U on the largest positive root of $X^{n} A(1 / X)$.
- $1 / U$ is a lower bound on the smallest positive root of $A(X)$.

Lower Bound on the smallest positive root

One Approach

- Roots of $X^{n} A(1 / X)$ are inverse of the roots of $A(X)$.
- Compute an upper bound U on the largest positive root of $X^{n} A(1 / X)$.
- $1 / U$ is a lower bound on the smallest positive root of $A(X)$.

Upper bound on positive roots, [Hong,98]

$$
B(X)=\sum_{i=0}^{n} b_{i} X^{i}, b_{n}>0 . U(B):=2 \max _{b_{i}<0} \min _{b_{j}>0 . j>i}\left\{\left|\frac{b_{i}}{b_{j}}\right|^{1 /(j-i)}\right\} .
$$

Lower Bound on the smallest positive root

One Approach

- Roots of $X^{n} A(1 / X)$ are inverse of the roots of $A(X)$.
- Compute an upper bound U on the largest positive root of $X^{n} A(1 / X)$.
- $1 / U$ is a lower bound on the smallest positive root of $A(X)$.

Upper bound on positive roots, [Hong,98]
$B(X)=\sum_{i=0}^{n} b_{i} X^{i}, b_{n}>0 . U(B):=2 \max _{b_{i}<0} \min _{b_{j}>0 . j>i}\left\{\left|\frac{b_{i}}{b_{j}}\right|^{1 /(j-i)}\right\}$.
Tight lower bound

$$
\text { Define } \operatorname{PLB}(A):=\frac{1}{U\left(X^{n} A(1 / X)\right)} .
$$

Suppose $A(X)$ has only real roots in $\Re(z)>0$ and α is the smallest positive root of $A(X)$. Then

$$
\frac{\alpha}{2 n} \leq \operatorname{PLB}(A)<\alpha
$$

Bound on the number of Taylor shifts along a path

Assume the polynomial $A(X)$ has only real roots.
\#(shifts needed to reach the floor of the smallest positive root α_{0})?

Bound on the number of Taylor shifts along a path

Assume the polynomial $A(X)$ has only real roots.
\#(shifts needed to reach the floor of the smallest positive root α_{0})?

Bound on the number of Taylor shifts along a path

Assume the polynomial $A(X)$ has only real roots.
\#(shifts needed to reach the floor of the smallest positive root α_{0})?

Since $\operatorname{PLB}(A)$ is a lower bound on α_{0} we have $\frac{\left|\alpha_{0}\right|}{2 n} \leq \operatorname{PLB}(A)$.

Bound on the number of Taylor shifts along a path

Assume the polynomial $A(X)$ has only real roots.
\#(shifts needed to reach the floor of the smallest positive root α_{0})?

Shift $A(X)$ by $\operatorname{PLB}(A)$ to obtain $A_{1}(X)$.

Bound on the number of Taylor shifts along a path

Assume the polynomial $A(X)$ has only real roots.
\#(shifts needed to reach the floor of the smallest positive root α_{0})?

Bound on the number of Taylor shifts along a path

Assume the polynomial $A(X)$ has only real roots.
\#(shifts needed to reach the floor of the smallest positive root α_{0})?

Shift $A_{1}(X)$ by a_{1} to get $A_{2}(X)$.

Bound on the number of Taylor shifts along a path

Assume the polynomial $A(X)$ has only real roots.
\#(shifts needed to reach the floor of the smallest positive root α_{0})?

Bound on the number of Taylor shifts along a path

Assume the polynomial $A(X)$ has only real roots.
\#(shifts needed to reach the floor of the smallest positive root α_{0})?

This continues until $\alpha_{i}<1$, i.e., we compute the floor of α_{0}.

Bound on the number of Taylor shifts along a path

Assume the polynomial $A(X)$ has only real roots.
\#(shifts needed to reach the floor of the smallest positive root α_{0})?

This continues until $\alpha_{i}<1$, i.e., we compute the floor of α_{0}.

- $\alpha_{i}=\alpha_{i-1}-\operatorname{PLB}\left(A_{i-1}\right) \leq \alpha_{i-1}\left(1-\frac{1}{2 n}\right)$.

Bound on the number of Taylor shifts along a path

Assume the polynomial $A(X)$ has only real roots.
\#(shifts needed to reach the floor of the smallest positive root α_{0})?

This continues until $\alpha_{i}<1$, i.e., we compute the floor of α_{0}.

- $\alpha_{i}=\alpha_{i-1}-\operatorname{PLB}\left(A_{i-1}\right) \leq \alpha_{i-1}\left(1-\frac{1}{2 n}\right)$.
- Thus $\alpha_{i} \leq \alpha_{0}\left(1-\frac{1}{2 n}\right)^{i}$.

Bound on the number of Taylor shifts along a path

Assume the polynomial $A(X)$ has only real roots.
\#(shifts needed to reach the floor of the smallest positive root α_{0})?
$\beta_{3}=\beta_{2}-a_{2}(X)=A_{2}\left(X+a_{2}\right) \xlongequal{\alpha_{3}=\alpha_{2}-a_{2}}$

This continues until $\alpha_{i}<1$, i.e., we compute the floor of α_{0}.

- $\alpha_{i}=\alpha_{i-1}-\operatorname{PLB}\left(A_{i-1}\right) \leq \alpha_{i-1}\left(1-\frac{1}{2 n}\right)$.
- Thus $\alpha_{i} \leq \alpha_{0}\left(1-\frac{1}{2 n}\right)^{i}$.
- Need at most $2 n \log \alpha_{0}$ Taylor shifts to compute floor of α_{0}.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

1 Consider a path in the recursion tree of RootIsol(A,M(X)), $M(X)=X$, from the root to a parent J of two leaves.
2 Let α_{J}, β_{J} be the roots associated with the leaves.

3 m be the number of inversion transformations along the path.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

Consider the i-th and $i+1$-th inversion transformation.
$A_{i}(X)$ be the polynomial associated with the blue node. a_{1}, \ldots, a_{ℓ} be its positive real roots.
\#(Taylor shift) from i-th to $i+1$-th transformation is bounded by
$2 n\left(\log a_{1}+\cdots+\log a_{\ell}\right) \leq$ $2 n^{2} \log a_{\ell} \leq 2 n^{2} \log q_{i}$.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

Consider the i-th and $i+1$-th inversion transformation.
$A_{i}(X)$ be the polynomial associated with the blue node. a_{1}, \ldots, a_{ℓ} be its positive real roots.
\#(Taylor shift) from i-th to $i+1$-th transformation is bounded by
$2 n\left(\log a_{1}+\cdots+\log a_{\ell}\right) \leq$ $2 n^{2} \log a_{\ell} \leq 2 n^{2} \log q_{i}$.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

Consider the i-th and $i+1$-th inversion transformation.
$A_{i}(X)$ be the polynomial associated with the blue node. a_{1}, \ldots, a_{ℓ} be its positive real roots.
\#(Taylor shift) from i-th to $i+1$-th transformation is bounded by
$2 n\left(\log a_{1}+\cdots+\log a_{\ell}\right) \leq$ $2 n^{2} \log a_{\ell} \leq 2 n^{2} \log q_{i}$.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

Consider the i-th and $i+1$-th inversion transformation.
$A_{i}(X)$ be the polynomial associated with the blue node. a_{1}, \ldots, a_{ℓ} be its positive real roots.
\#(Taylor shift) from i-th to $i+1$-th transformation is bounded by
$2 n\left(\log a_{1}+\cdots+\log a_{\ell}\right) \leq$ $2 n^{2} \log a_{\ell} \leq 2 n^{2} \log q_{i}$.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

Consider the i-th and $i+1$-th inversion transformation.
$A_{i}(X)$ be the polynomial associated with the blue node. a_{1}, \ldots, a_{ℓ} be its positive real roots.
\#(Taylor shift) from i-th to $i+1$-th transformation is bounded by
$2 n\left(\log a_{1}+\cdots+\log a_{\ell}\right) \leq$ $2 n^{2} \log a_{\ell} \leq 2 n^{2} \log q_{i}$.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

Consider the i-th and $i+1$-th inversion transformation.
$A_{i}(X)$ be the polynomial associated with the blue node. a_{1}, \ldots, a_{ℓ} be its positive real roots.
\#(Taylor shift) from i-th to $i+1$-th transformation is bounded by
$2 n\left(\log a_{1}+\cdots+\log a_{\ell}\right) \leq$ $2 n^{2} \log a_{\ell} \leq 2 n^{2} \log q_{i}$.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

Consider the i-th and $i+1$-th inversion transformation.
$A_{i}(X)$ be the polynomial associated with the blue node. a_{1}, \ldots, a_{ℓ} be its positive real roots.
\#(Taylor shift) from i-th to $i+1$-th transformation is bounded by
$2 n\left(\log a_{1}+\cdots+\log a_{\ell}\right) \leq$ $2 n^{2} \log a_{\ell} \leq 2 n^{2} \log q_{i}$.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

Consider the i-th and $i+1$-th inversion transformation.
$A_{i}(X)$ be the polynomial associated with the blue node. a_{1}, \ldots, a_{ℓ} be its positive real roots.
\#(Taylor shift) from i-th to $i+1$-th transformation is bounded by
$2 n\left(\log a_{1}+\cdots+\log a_{\ell}\right) \leq$ $2 n^{2} \log a_{\ell} \leq 2 n^{2} \log q_{i}$.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

Consider the i-th and $i+1$-th inversion transformation.
$A_{i}(X)$ be the polynomial associated with the blue node. a_{1}, \ldots, a_{ℓ} be its positive real roots.
\#(Taylor shift) from i-th to $i+1$-th transformation is bounded by
$2 n\left(\log a_{1}+\cdots+\log a_{\ell}\right) \leq$ $2 n^{2} \log a_{\ell} \leq 2 n^{2} \log q_{i}$.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

$A_{i}(X)$ be the polynomial associated with the blue node. a_{1}, \ldots, a_{ℓ} be its positive real roots.
\#(Taylor shift) from i-th to $i+1$-th transformation is bounded by
$2 n\left(\log a_{1}+\cdots+\log a_{\ell}\right) \leq$
$2 n^{2} \log a_{\ell} \leq 2 n^{2} \log q_{i}$.

Total number of Taylor shifts on the path to J is $n^{2} O\left(\sum_{i=1}^{m} \log q_{i}\right)$.

Number of Taylor shifts along a path in the tree
Assume the polynomial $A(X)$ has only real roots.

Total number of Taylor shifts on the path to J is $n^{2} O\left(\sum_{i=1}^{m} \log q_{i}\right)$.

$$
\begin{aligned}
& \text { We can show } \\
& \sum_{i=1}^{m} \log q_{i}=O\left(\log \left|\alpha_{J}-\beta_{J}\right|^{-1}\right) .
\end{aligned}
$$

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

Total number of Taylor shifts on the path to J is $n^{2} O\left(\sum_{i=1}^{m} \log q_{i}\right)$.

> We can show
> $\sum_{i=1}^{m} \log q_{i}=O\left(\log \left|\alpha_{J}-\beta_{J}\right|^{-1}\right)$.

Total number of Taylor shifts on the path to J is
$n^{2} O\left(\log \left|\alpha_{J}-\beta_{J}\right|^{-1}\right)$.

Number of Taylor shifts along a path in the tree

Assume the polynomial $A(X)$ has only real roots.

Proposition

The total number of Taylor shifts in the tree is bounded by

$$
n^{2} O\left(\sum_{J} \log \left|\alpha_{J}-\beta_{J}\right|^{-1}\right)
$$

Lower bound on $\prod_{J}\left|\alpha_{J}-\beta_{J}\right|$?

$\sum_{i=1}^{m} \log q_{i}=U\left(\log \left|\alpha_{J}-\left|\rho_{J}\right|^{1}\right)\right.$.

Total number of Taylor shifts on the path to J is $n^{2} O\left(\log \left|\alpha_{J}-\beta_{J}\right|^{-1}\right)$.

The Davenport-Mahler bound

Theorem (Davenport-Mahler [Dav., 1985] [Du/Sharma/Yap, 2005])
Consider a polynomial $A(X) \in \mathbb{C}[X]$ of degree n.
Let $G=(V, E)$ be a DAG whose vertices are the roots of $A(X)$. If
(i) $(\alpha, \beta) \in E \Longrightarrow|\alpha| \leq|\beta|$, and
(ii) in-degree of all vertices is at most one.
then

$$
\prod_{(\alpha, \beta) \in E}|\beta-\alpha| \geq \frac{\sqrt{|\operatorname{discr}(A)|}}{\mathrm{M}(A)^{n-1}} \cdot 2^{-O(n \log n)},
$$

where, if ϑ_{i} are roots of $A(X)$,

$$
\operatorname{discr}(A):=a_{n}^{2 n-2} \prod_{i>j}\left(\vartheta_{i}-\vartheta_{j}\right)^{2} \quad \text { and } \quad \mathrm{M}(A):=\left|a_{n}\right| \prod_{i} \max \left\{1,\left|\vartheta_{i}\right|\right\}
$$

The Davenport-Mahler bound

Theorem (Davenport-Mahler [Dav., 1985] [Du/Sharma/Yap, 2005])
Consider a polynomial $A(X) \in \mathbb{C}[X]$ of degree n.
Let $G=(V, E)$ be a DAG whose vertices are the roots of $A(X)$. If
(i) $(\alpha, \beta) \in E \Longrightarrow|\alpha| \leq|\beta|$, and
(ii) in-degree of all vertices is at most one.
then

$$
\prod_{(\alpha, \beta) \in E}|\beta-\alpha| \geq \frac{\sqrt{|\operatorname{discr}(A)|}}{\mathrm{M}(A)^{n-1}} \cdot 2^{-O(n \log n)}
$$

where, if ϑ_{i} are roots of $A(X)$,

$$
\operatorname{discr}(A):=a_{n}^{2 n-2} \prod_{i>j}\left(\vartheta_{i}-\vartheta_{j}\right)^{2} \quad \text { and } \quad \mathrm{M}(A):=\left|a_{n}\right| \prod_{i} \max \left\{1,\left|\vartheta_{i}\right|\right\}
$$

The Davenport-Mahler bound

Theorem (Davenport-Mahler [Dav., 1985] [Du/Sharma/Yap, 2005])
Consider a polynomial $A(X) \in \mathbb{C}[X]$ of degree n.
Let $G=(V, E)$ be a DAG whose vertices are the roots of $A(X)$. If
(i) $(\alpha, \beta) \in E \Longrightarrow|\alpha| \leq|\beta|$, and
(ii) in-degree of all vertices is at most one.
then

$$
\prod_{(\alpha, \beta) \in E}|\beta-\alpha| \geq \frac{\sqrt{|\operatorname{discr}(A)|}}{\mathrm{M}(A)^{n-1}} \cdot 2^{-O(n \log n)},
$$

where, if ϑ_{i} are roots of $A(X)$,

$$
\operatorname{discr}(A):=a_{n}^{2 n-2} \prod_{i>j}\left(\vartheta_{i}-\vartheta_{j}\right)^{2} \quad \text { and } \quad \mathrm{M}(A):=\left|a_{n}\right| \prod_{i} \max \left\{1,\left|\vartheta_{i}\right|\right\}
$$

Corollary

If $A(X) \in \mathbb{Z}[X]$ is square-free, has degree n, and coefficient bit-length L then

$$
\prod_{(\alpha, \beta) \in E}|\beta-\alpha|=2^{-O(n L)} .
$$

Bound on the Size of the Recursion Tree

Assume $A(X)$ has degree n, coefficient bit-length L and only real roots.

Bound on the Size of the Recursion Tree

Assume $A(X)$ has degree n, coefficient bit-length L and only real roots.

Number of inversion transformations

$$
\sum_{J}\left(2-\log \left|\beta_{J}-\alpha_{J}\right|\right)=\widetilde{O}(n L)
$$

Bound on the Size of the Recursion Tree

Assume $A(X)$ has degree n, coefficient bit-length L and only real roots.

Number of inversion transformations

$$
\sum_{J}\left(2-\log \left|\beta_{J}-\alpha_{J}\right|\right)=\widetilde{O}(n L)
$$

Number of Taylor shifts

$$
n^{2} \sum_{J} \log \left|\beta_{J}-\alpha_{J}\right|^{-1}=\widetilde{O}\left(n^{3} L\right)
$$

Bound on the Size of the Recursion Tree

Assume $A(X)$ has degree n, coefficient bit-length L and only real roots.
Number of inversion transformations

$$
\Sigma_{J}\left(2-\log \left|\beta_{J}-\alpha_{J}\right|\right)=\widetilde{O}(n L) .
$$

Number of Taylor shifts

$$
n^{2} \sum_{J} \log \left|\beta_{J}-\alpha_{J}\right|^{-1}=\widetilde{O}\left(n^{3} L\right)
$$

Theorem

Let $A(X)$ be a square-free polynomial of degree n, and integer coefficients of bit-length L. The size of the recursion tree of Akritas' algorithm run on $A(X)$ is bounded by

- $\widetilde{O}\left(n^{3} L\right)$, if $A(X)$ has only real roots

Bound on the Size of the Recursion Tree

Assume $A(X)$ has degree n, coefficient bit-length L and only real roots.
Number of inversion transformations

$$
\Sigma_{J}\left(2-\log \left|\beta_{J}-\alpha_{J}\right|\right)=\widetilde{O}(n L) .
$$

Number of Taylor shifts

$$
n^{2} \sum_{J} \log \left|\beta_{J}-\alpha_{J}\right|^{-1}=\widetilde{O}\left(n^{3} L\right)
$$

Theorem

Let $A(X)$ be a square-free polynomial of degree n, and integer coefficients of bit-length L. The size of the recursion tree of Akritas' algorithm run on $A(X)$ is bounded by

- $\widetilde{O}\left(n^{3} L\right)$, if $A(X)$ has only real roots
- The result holds in genera!!

Worst case bit-complexity of a node in the tree

- Let m be the number of inversion transformations along a path.

Worst case bit-complexity of a node in the tree

- Let m be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from i-th to $i+1$-th inversion transformation be $q_{i}, i=0, \ldots, m$.

Worst case bit-complexity of a node in the tree

- Let m be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from i-th to $i+1$-th inversion transformation be $q_{i}, i=0, \ldots, m$.
- Cost of computing $A\left(X+q_{i}\right)$ using classical Taylor shifts?

1 Total number of operations (Taylor shifts \& Hong's bound) $O\left(n^{2}\right)$.

Worst case bit-complexity of a node in the tree

- Let m be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from i-th to $i+1$-th inversion transformation be $q_{i}, i=0, \ldots, m$.
- Cost of computing $A\left(X+q_{i}\right)$ using classical Taylor shifts?

1 Total number of operations (Taylor shifts \& Hong's bound) $O\left(n^{2}\right)$.
2 Bit-size of the quantities added $L+n \log q_{0}+\cdots+n \log q_{i}$.

Worst case bit-complexity of a node in the tree

- Let m be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from i-th to $i+1$-th inversion transformation be $q_{i}, i=0, \ldots, m$.
- Cost of computing $A\left(X+q_{i}\right)$ using classical Taylor shifts?

1 Total number of operations (Taylor shifts \& Hong's bound) $O\left(n^{2}\right)$.
2 Bit-size of the quantities added $L+n \log q_{0}+\cdots+n \log q_{i}$.
3 Cost is $O\left(n^{2} M\left(L+n \log q_{0}+\cdots+n \log q_{i}\right)\right) ; M(p)$ is the cost of multiplying two p-bit integers.

Worst case bit-complexity of a node in the tree

- Let m be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from i-th to $i+1$-th inversion transformation be $q_{i}, i=0, \ldots, m$.
- Cost of computing $A\left(X+q_{i}\right)$ using classical Taylor shifts?

1 Total number of operations (Taylor shifts \& Hong's bound) $O\left(n^{2}\right)$.
2 Bit-size of the quantities added $L+n \log q_{0}+\cdots+n \log q_{i}$.
3 Cost is $O\left(n^{2} M\left(L+n \log q_{0}+\cdots+n \log q_{i}\right)\right) ; M(p)$ is the cost of multiplying two p-bit integers.

- We can show $\sum_{i=0}^{m} \log q_{i}=\widetilde{O}(n L)$.

Worst case bit-complexity of a node in the tree

- Let m be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from i-th to $i+1$-th inversion transformation be $q_{i}, i=0, \ldots, m$.
- Cost of computing $A\left(X+q_{i}\right)$ using classical Taylor shifts?

1 Total number of operations (Taylor shifts \& Hong's bound) $O\left(n^{2}\right)$.
2 Bit-size of the quantities added $L+n \log q_{0}+\cdots+n \log q_{i}$.
3 Cost is $O\left(n^{2} M\left(L+n \log q_{0}+\cdots+n \log q_{i}\right)\right) ; M(p)$ is the cost of multiplying two p-bit integers.

- We can show $\sum_{i=0}^{m} \log q_{i}=\widetilde{O}(n L)$.
- Thus worst-case complexity of a node assuming fast integer arithmetic is $\widetilde{O}\left(n^{4} L\right)$.

Worst case bit-complexity of a node in the tree

- Let m be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from i-th to $i+1$-th inversion transformation be $q_{i}, i=0, \ldots, m$.
- Cost of computing $A\left(X+q_{i}\right)$ using classical Taylor shifts?

1 Total number of operations (Taylor shifts \& Hong's bound) $O\left(n^{2}\right)$.
2 Bit-size of the quantities added $L+n \log q_{0}+\cdots+n \log q_{i}$.
3 Cost is $O\left(n^{2} M\left(L+n \log q_{0}+\cdots+n \log q_{i}\right)\right) ; M(p)$ is the cost of multiplying two p-bit integers.

- We can show $\sum_{i=0}^{m} \log q_{i}=\widetilde{O}(n L)$.
- Thus worst-case complexity of a node assuming fast integer arithmetic is $\widetilde{O}\left(n^{4} L\right)$.

Cannot use asymptotically fast Taylor shifts [vzGathen/Gerhard, 1997].

Worst case bit-complexity of a node in the tree

- Let m be the number of inversion transformations along a path.
- Let the total amount of Taylor shift from i-th to $i+1$-th inversion transformation be $q_{i}, i=0, \ldots, m$.
- Cost of computing $A\left(X+q_{i}\right)$ using classical Taylor shifts?

1 Total number of operations (Taylor shifts \& Hong's bound) $O\left(n^{2}\right)$.
2 Bit-size of the quantities added $L+n \log q_{0}+\cdots+n \log q_{i}$.
3 Cost is $O\left(n^{2} M\left(L+n \log q_{0}+\cdots+n \log q_{i}\right)\right) ; M(p)$ is the cost of multiplying two p-bit integers.

- We can show $\sum_{i=0}^{m} \log q_{i}=\widetilde{O}(n L)$.
- Thus worst-case complexity of a node assuming fast integer arithmetic is $\widetilde{O}\left(n^{4} L\right)$.

Cannot use asymptotically fast Taylor shifts [vzGathen/Gerhard, 1997].

Combined with our worst-case bound $\widetilde{O}\left(n^{3} L\right)$ on tree-size.

Main Result

Theorem

For a square-free integer polynomial of degree n, and coefficients of bit-length L, the worst-case running time of Akritas' algorithm is bounded by $\widetilde{O}\left(n^{7} L^{2}\right)$.

Expected Complexity, [Tsigaridas/Emiris, 2006]

The size of the tree

- Assumes floor of the smallest positive root can be computed in $O(1)$.
- Number of Taylor shifts \sim Number of inversion transformations.
- So the size of the tree is $\widetilde{O}(n L)$.

Expected Complexity, [Tsigaridas/Emiris, 2006]

The size of the tree

- Assumes floor of the smallest positive root can be computed in $O(1)$.
- Number of Taylor shifts \sim Number of inversion transformations.
- So the size of the tree is $\widetilde{O}(n L)$.

Expected complexity of a node

- From Khinchin's result we know $E\left[\sum_{j=0}^{i} \log q_{j}\right]=i+1=\widetilde{O}(n L)$.
- Expected cost at a node is $O\left(n^{2} M\left(L+n \sum_{j=0}^{i} b_{i}\right)\right)=\widetilde{O}\left(n^{4} L\right)$.

Expected Complexity, [Tsigaridas/Emiris, 2006]

The size of the tree

- Assumes floor of the smallest positive root can be computed in $O(1)$.
- Number of Taylor shifts \sim Number of inversion transformations.
- So the size of the tree is $\widetilde{O}(n L)$.

Expected complexity of a node

- From Khinchin's result we know $E\left[\sum_{j=0}^{i} \log q_{j}\right]=i+1=\widetilde{O}(n L)$.
- Expected cost at a node is $O\left(n^{2} M\left(L+n \sum_{j=0}^{i} b_{i}\right)\right)=\widetilde{O}\left(n^{4} L\right)$.

Theorem

Expected running time of Akritas' algorithm:

- $\widetilde{O}\left(n^{5} L^{2}\right)$ using classical Taylor shifts with fast integer arithmetic,
- $\widetilde{O}\left(n^{4} L^{2}\right)$ using asymptotically fast Taylor shifts.

Comparison with the Descartes method

Input: $A(X) \in \mathbb{R}[X]$ of degree n, and (c, d).
Output: Isolating intervals for roots of $A(X)$ in (c, d).

Comparison with the Descartes method

Input: $A(X) \in \mathbb{R}[X]$ of degree n, and (c, d).
Output: Isolating intervals for roots of $A(X)$ in (c, d).
Estimate on the number of roots, $E(A,(c, d))$
Let $A(X)=\sum_{i=0}^{n} a_{i}\binom{n}{i}(X-c)^{i}(d-X)^{n-i}(d-c)^{-n}$.
$E(A,(c, d)):=$ \#(sign variations in $\left.\left(a_{n}, a_{n-1}, \ldots, a_{0}\right)\right)$.

- If $E(A,(c, d))=0$ then $A(X)$ has no roots in (c, d).
- If $E(A,(c, d))=1$ then $A(X)$ has one root in (c, d).

Comparison with the Descartes method

Input: $A(X) \in \mathbb{R}[X]$ of degree n, and (c, d).
Output: Isolating intervals for roots of $A(X)$ in (c, d).
Estimate on the number of roots, $E(A,(c, d))$
Let $A(X)=\sum_{i=0}^{n} a_{i}\binom{n}{i}(X-c)^{i}(d-X)^{n-i}(d-c)^{-n}$.
$E(A,(c, d)):=$ \#(sign variations in $\left.\left(a_{n}, a_{n-1}, \ldots, a_{0}\right)\right)$.

- If $E(A,(c, d))=0$ then $A(X)$ has no roots in (c, d).
- If $E(A,(c, d))=1$ then $A(X)$ has one root in (c, d).
$\operatorname{Descartes}(A,(c, d))$
- If $E(A,(c, d))=0$ return.
- If $E(A,(c, d))=1$ output (c, d).

Comparison with the Descartes method

Input: $A(X) \in \mathbb{R}[X]$ of degree n, and (c, d).
Output: Isolating intervals for roots of $A(X)$ in (c, d).
Estimate on the number of roots, $E(A,(c, d))$
Let $A(X)=\sum_{i=0}^{n} a_{i}\binom{n}{i}(X-c)^{i}(d-X)^{n-i}(d-c)^{-n}$.
$E(A,(c, d)):=$ \#(sign variations in $\left.\left(a_{n}, a_{n-1}, \ldots, a_{0}\right)\right)$.

- If $E(A,(c, d))=0$ then $A(X)$ has no roots in (c, d).
- If $E(A,(c, d))=1$ then $A(X)$ has one root in (c, d).
$\operatorname{Descartes}(A,(c, d))$
- If $E(A,(c, d))=0$ return.
- If $E(A,(c, d))=1$ output (c, d).
- If $m:=(c+d) / 2$ is a root of $A(X)$ output $[m, m]$.

Comparison with the Descartes method

Input: $A(X) \in \mathbb{R}[X]$ of degree n, and (c, d).
Output: Isolating intervals for roots of $A(X)$ in (c, d).
Estimate on the number of roots, $E(A,(c, d))$
Let $A(X)=\sum_{i=0}^{n} a_{i}\binom{n}{i}(X-c)^{i}(d-X)^{n-i}(d-c)^{-n}$.
$E(A,(c, d)):=$ \#(sign variations in $\left.\left(a_{n}, a_{n-1}, \ldots, a_{0}\right)\right)$.

- If $E(A,(c, d))=0$ then $A(X)$ has no roots in (c, d).
- If $E(A,(c, d))=1$ then $A(X)$ has one root in (c, d).
$\operatorname{Descartes}(A,(c, d))$
- If $E(A,(c, d))=0$ return.
- If $E(A,(c, d))=1$ output (c, d).
- If $m:=(c+d) / 2$ is a root of $A(X)$ output $[m, m]$.
- Call $\operatorname{Descartes}(A,(c, m))$ and $\operatorname{Descartes~}(A,(m, d))$.

Comparison with the Descartes method

Input: $A(X) \in \mathbb{R}[X]$ of degree n, and (c, d).
Output: Isolating intervals for roots of $A(X)$ in (c, d).
Estimate on the number of roots, $E(A,(c, d))$
Let $A(X)=\sum_{i=0}^{n} a_{i}\binom{n}{i}(X-c)^{i}(d-X)^{n-i}(d-c)^{-n}$.
$E(A,(c, d)):=$ \#(sign variations in $\left.\left(a_{n}, a_{n-1}, \ldots, a_{0}\right)\right)$.

- If $E(A,(c, d))=0$ then $A(X)$ has no roots in (c, d).
- If $E(A,(c, d))=1$ then $A(X)$ has one root in (c, d).
$\operatorname{Descartes}(A,(c, d))$
- If $E(A,(c, d))=0$ return.
- If $E(A,(c, d))=1$ output (c, d).
- If $m:=(c+d) / 2$ is a root of $A(X)$ output $[m, m]$.
- Call $\operatorname{Descartes}(A,(c, m))$ and $\operatorname{Descartes~}(A,(m, d))$.

Comparison with the Descartes method

	Descartes	Akritas
Complexity	$\widetilde{O}\left(n^{5} L^{2}\right)$	$\widetilde{O}\left(n^{7} L^{2}\right)$
Size of the tree	$\widetilde{O}(n L)$	$\widetilde{O}\left(n^{3} L\right)$

Comparison with the Descartes method

	Descartes	Akritas
Complexity	$\widetilde{O}\left(n^{5} L^{2}\right)$	$\widetilde{O}\left(n^{7} L^{2}\right)$
Size of the tree	$\widetilde{O}(n L)$	$\widetilde{O}\left(n^{3} L\right)$

Reasons

- Width of the interval doesn't necessarily go down by half at each recursion step.
- Lower bound is off by a factor of $n(-)$.

Comparison with the Descartes method

	Descartes	Akritas
Complexity	$\widetilde{O}\left(n^{5} L^{2}\right)$	$\widetilde{O}\left(n^{7} L^{2}\right)$
Size of the tree	$\widetilde{O}(n L)$	$\widetilde{O}\left(n^{3} L\right)$

Reasons

- Width of the interval doesn't necessarily go down by half at each recursion step.
- Lower bound is off by a factor of $n(-)$.

But...

- Degree 100 Mignotte's polynomials $\left(X^{n}-(a X-1)^{2}\right)$: [Emiris/Tsigaridas, '06]: Descartes 7.83sec. and Akritas 0.02sec.
- Available in Mathematica.
- [Collins/Akritas, 1976]: $O\left(n^{6} L^{2}\right)$; [Johnson, 1998]: $O\left(n^{4} L^{2}\right)$.

Possible ways to improve the complexity

1 Derive tight bounds on largest positive root of a polynomial in $O(n)$ operations. Bounds by [Kioustelidis, 1986; Ştefănescu, 2005] are known to be not tight. A recent bound by Akritas et al. might help.

Possible ways to improve the complexity

1 Derive tight bounds on largest positive root of a polynomial in $O(n)$ operations. Bounds by [Kioustelidis, 1986; Ştefănescu, 2005] are known to be not tight. A recent bound by Akritas et al. might help.
2 Instead of using Horner's method for computing $A(X+b)$, scale by b and shift by one.

Possible ways to improve the complexity

1 Derive tight bounds on largest positive root of a polynomial in $O(n)$ operations. Bounds by [Kioustelidis, 1986; Ştefănescu, 2005] are known to be not tight. A recent bound by Akritas et al. might help.
2 Instead of using Horner's method for computing $A(X+b)$, scale by b and shift by one.

Open question

For Mignotte's polynomial $X^{n}-2(a X-1)^{2}, a \in \mathbb{N}$, the size of the recursion tree is $O(\log a)$ using Zassenhaus' bound (the Descartes method has recursion tree size $\Omega(n \log a)$).

Summary

Main Result

For a square-free polynomial $A(X)$, degree n, and coefficient bit-length L :
1 Worst case bit-complexity of Akritas' algorithm is $\widetilde{O}\left(n^{7} L^{2}\right)$.

Summary

Main Result

For a square-free polynomial $A(X)$, degree n, and coefficient bit-length L :
1 Worst case bit-complexity of Akritas' algorithm is $\widetilde{O}\left(n^{7} L^{2}\right)$.
2 Worst case number of Taylor shifts $-\widetilde{O}\left(n^{3} L\right)$.

Summary

Main Result

For a square-free polynomial $A(X)$, degree n, and coefficient bit-length L :
1 Worst case bit-complexity of Akritas' algorithm is $\widetilde{O}\left(n^{7} L^{2}\right)$.
2 Worst case number of Taylor shifts $-\widetilde{O}\left(n^{3} L\right)$.
3 Using a bound by Hong to compute the floor of the smallest positive root (instead of assuming that it can be done in constant time).

Summary

Main Result

For a square-free polynomial $A(X)$, degree n, and coefficient bit-length L :
1 Worst case bit-complexity of Akritas' algorithm is $\widetilde{O}\left(n^{7} L^{2}\right)$.
2 Worst case number of Taylor shifts $-\widetilde{O}\left(n^{3} L\right)$.
3 Using a bound by Hong to compute the floor of the smallest positive root (instead of assuming that it can be done in constant time).
4 Using Davenport's bound to amortize the bit-size of continued fractions (instead of using Khinchin's result).

Summary

Main Result

For a square-free polynomial $A(X)$, degree n, and coefficient bit-length L :
1 Worst case bit-complexity of Akritas' algorithm is $\widetilde{O}\left(n^{7} L^{2}\right)$.
2 Worst case number of Taylor shifts $-\widetilde{O}\left(n^{3} L\right)$.
3 Using a bound by Hong to compute the floor of the smallest positive root (instead of assuming that it can be done in constant time).
4 Using Davenport's bound to amortize the bit-size of continued fractions (instead of using Khinchin's result).

Paper is available from http://www.cs.nyu.edu/sharma/pap/.

Merci!

