Sur une conjecture de Silverman pour les endomorphismes du plan affine

Jonsson, Wulcan et moi travaillons sur une conjecture de Silverman pour les endomorphismes polynomiaux du plan affine.

Soit $f = (F, G) : \mathbb{A}^2 \to \mathbb{A}^2$ un endomorphisme polynomial défini sur $\overline{\mathbb{Q}}$. Notons $\deg(f) := \max\{\deg F, \deg G\}$ le degré algébrique de f. Notons $\lambda_1(f)$ le degré dynamique de f c.-à.-d. $\lambda_1(f) := \limsup_{n \to \infty} \deg(f^n)^{1/n}$ et $\lambda_2(f)$ le degré topologique de f c.-à.-d., le nombre de préimages d'un point générique. Pour tous les points $p \in \mathbb{A}^2(\overline{\mathbb{Q}})$, notons $O_f(p) := \{f^n(p) | n \geq 0\}$ l'orbite de p.

Pour tous les point $p \in \mathbb{A}^2(\overline{\mathbb{Q}})$, Silverman a défini le degré arithmétique de f comme la quantité

$$\alpha_f(p) := \limsup_{n \to \infty} h(f^n(p))^{1/n}$$

où h est la hauteur naïve de $\mathbb{A}^2(\overline{\mathbb{Q}})$. Il a également montré que $\alpha_f(p) \leq \lambda_1(f)$ pour tout $p \in \mathbb{A}^2(\overline{\mathbb{Q}})$. Dans notre cas, la conjecture de Silverman devient la suivante

Conjecture 0.1. $f: \mathbb{A}^2_{\overline{\mathbb{Q}}} \to \mathbb{A}^2_{\overline{\mathbb{Q}}}$ un endomorphisme polynomial dominant défini sur $\overline{\mathbb{Q}}$. Alors

- (i) l'ensemble $\{\alpha_f(p)|\ p\in\mathbb{A}^2(\overline{\mathbb{Q}})\}$ est un ensemble fini d'entiers algébriques;
- (ii) si $p \in \mathbb{A}^2(\overline{\mathbb{Q}})$ est un point dont l'orbite $O_f(p)$ est Zariski dense dans \mathbb{A}^2 , alors on a $\alpha_f(p) = \lambda_1(f)$.

Avec Jonsson et Wulcan, nous avons prouvé la conjecture 0.1 dans le cas où $\lambda_2 \leq \lambda_1$. En outre, nous avons prouvé que la conjecture de Vojta implique la conjecture 0.1.