

On the countermeasures to the higher genus torsion point attacks on SIDH

Tako Boris Fouotsa, LASEC-EPFL

IRMAR, Rennes, December 2nd, 2022

Outline

Generalities and SIDH

Torsion point attacks

Countermeasures

Analysis of the countermeasures

Summary

Generalities and SIDH

Two parties : Alice (red) and Bob (blue)

Aim: share the same key (bit string, integer, ...)

Two parties : Alice (red) and Bob (blue)

Aim: share the same key (bit string, integer, \dots)

Two parties : Alice (red) and Bob (blue)

Aim: share the same key (bit string, integer, ...)

Two parties : Alice (red) and Bob (blue)

Aim: share the same key (bit string, integer, ...)

Two parties : Alice (red) and Bob (blue)

Aim: share the same key (bit string, integer, ...)

Two parties : Alice (red) and Bob (blue)

Aim: share the same key (bit string, integer, ...)

Break the protocol: recover the shared key by spying on the internet (or chanel).

CDH: Given $g, p, A = g^a$ and $B = g^b$, find g^{ab} .

DL: Given g, p and $A = g^{a}$, find a.

Hard to break using classical computer

Easy to break with quantum computer

Break the protocol: recover the shared key by spying on the internet (or chanel).

CDH: Given $g, p, A = g^a$ and $B = g^b$, find g^{ab} .

DL: Given g, p and $A = g^{a}$, find a.

Hard to break using classical computer

Easy to break with quantum computer

Break the protocol: recover the shared key by spying on the internet (or chanel).

CDH: Given $g, p, A = g^a$ and $B = g^b$, find g^{ab} .

DL: Given g, p and $A = g^{a}$, find a.

Hard to break using classical computer

Easy to break with quantum computer

Post-Quantum: hard for both classical and quantum computers.

Lattices, Codes, Isogenies, Multivariate equations, Hash Functions, ...

Isogeny-based Cryptography:

- Very compact keys
- Offers a good replacement for Diffie-Hellman (NIKE)

But:

- Relatively slow
- Young field

Post-Quantum: hard for both classical and quantum computers.

Lattices, Codes, Isogenies, Multivariate equations, Hash Functions, ...

Isogeny-based Cryptography:

- Very compact keys
- Offers a good replacement for Diffie-Hellman (NIKE)

But:

- Relatively slow
- Young field

Post-Quantum: hard for both classical and quantum computers.

Lattices, Codes, Isogenies, Multivariate equations, Hash Functions, ...

Isogeny-based Cryptography:

- Very compact keys
- Offers a good replacement for Diffie-Hellman (NIKE)

But:

- Relatively slow
- Young field

Elliptic curves: $E: y^2 = x^3 + Ax + B$, are abelian groups.

Isogenies: rational maps between elliptic curves, that are group morphims. Degree := size of the kernel (separable isogenies)

DH with isogenies:

Elliptic curves: $E: y^2 = x^3 + Ax + B$, are abelian groups.

Elliptic curves: $E: y^2 = x^3 + Ax + B$, are abelian groups.

Elliptic curves: $E: y^2 = x^3 + Ax + B$, are abelian groups.

Elliptic curves: $E: y^2 = x^3 + Ax + B$, are abelian groups.

Commutativity !!: use ordinary isogenies $\rightarrow CRS^1$.

- 1. Inefficient
- 2. Quantum sub-exponential time (group actions)

¹Couveignes-Rostotsev-Stulbunov 1996/2006

Efficient and no quantum attack !!: use supersingular isogenies. 1. Do not commute !!

Efficient and no quantum attack !!: use supersingular isogenies.

1. Do not commute !!

Jao-De Feo 2011: Reveal torsion point images \rightarrow SIDH

Efficient and no quantum attack !!: use supersingular isogenies.

1. Do not commute !!

Jao-De Feo 2011: Reveal torsion point images \rightarrow SIDH Ambient field: \mathbb{F}_{p^2} , $p = 2^a 3^b - 1$. deg $\phi_A = 2^a$ deg $\phi_B = 3^b$ $E_0[2^a] = \langle P_A, Q_A \rangle$, $E_0[3^b] = \langle P_B, Q_B \rangle$

SSI-CDH: Given E_0 , P_A , Q_A , P_B , Q_B , E_A , $\phi_A(P_B)$, $\phi_A(Q_B)$, E_B , $\phi_B(P_A)$ and $\phi_B(Q_A)$, compute E_{AB} . **SSI-T:** Given E_0 , P_A , Q_A , P_B , Q_B , E_B , $\phi_B(P_A)$ and $\phi_B(Q_A)$, compute ϕ_B .

GPST 2016: adaptive attack on SIDH, only countered by the FO transform

Petit 2017: torsion point attack on imbalanced SIDH, no impact on SIDH

dQKL+ 2021: improvement on Petit TPA, but SIDH still safe.

FP 2022: new adaptive attack on SIDH using TPA, no impact on SIDH

CD-MM-R 2022, final shot: SIDH/SIKE is broken in seconds...

All these attacks exploit torsion point information !!

Non exhaustive list: BdQL+ 2019, ...

GPST 2016: adaptive attack on SIDH, only countered by the FO transform

Petit 2017: torsion point attack on imbalanced SIDH, no impact on SIDH

dQKL+ 2021: improvement on Petit TPA, but SIDH still safe.

FP 2022: new adaptive attack on SIDH using TPA, no impact on SIDH

CD-MM-R 2022, final shot: SIDH/SIKE is broken in seconds...

All these attacks exploit torsion point information !!

Non exhaustive list: BdQL+ 2019, ...

GPST 2016: adaptive attack on SIDH,

Petit 2017: torsion point attack on imbalanced SIDH, no impact on SIDH

dQKL+ 2021: improvement on Petit TPA, but SIDH still safe.

FP 2022: new adaptive attack on SIDH using TPA, no impact on SIDH $\,$

CD-MM-R 2022, final shot: SIDH/SIKE is broken in seconds...

Non exhaustive list: BdQL+ 2019, ...

GPST 2016: adaptive attack on SIDH,

Petit 2017: torsion point attack on imbalanced SIDH,

dQKL+ 2021: improvement on Petit TPA, but SIDH still safe.

FP 2022: new adaptive attack on SIDH using TPA, no impact on SIDH

CD-MM-R 2022, final shot: SIDH/SIKE is broken in seconds...

Non exhaustive list: BdQL+ 2019, \dots

GPST 2016: adaptive attack on SIDH,

Petit 2017: torsion point attack on imbalanced SIDH,

dQKL+ 2021: improvement on Petit TPA, but SIDH still safe.

FP 2022: new adaptive attack on SIDH using TPA, no impact on SIDH

CD-MM-R 2022, final shot: SIDH/SIKE is broken in seconds...

Non exhaustive list: BdQL+ 2019, ...

GPST 2016: adaptive attack on SIDH,
Petit 2017: torsion point attack on imbalanced SIDH,
dQKL+ 2021: improvement on Petit TPA, but SIDH still safe.
FP 2022: new adaptive attack on SIDH using TPA,
CD-MM-R 2022, final shot: SIDH/SIKE is broken in seconds...

Non exhaustive list: BdQL+ 2019, \dots

GPST 2016: adaptive attack on SIDH,
Petit 2017: torsion point attack on imbalanced SIDH,
dQKL+ 2021: improvement on Petit TPA, but SIDH still safe.
FP 2022: new adaptive attack on SIDH using TPA,
CD-MM-R 2022, final shot: SIDH/SIKE is broken in seconds...

Non exhaustive list: BdQL+ 2019, ...

CD-MM-R attacks require:

- 1. torsion points information;
- 2. degree of the secret isogeny.

Two countermeasures:

- Masked-degree SIDH (MD-SIDH): the degree of the secret isogeny is secret;
- Masked torsion points SIDH (M-SIDH): the degree of the secret isogeny if fixed, but the torsion point images are scaled by a secret scalar.

Current analysis: field characteristic $\log_2 p \approx 6000$, as oppose to $\log_2 p \approx 434$ in SIDH, for 128 bits of security.

Torsion point attacks

More facts about isogenies

$$E/\mathbb{F}_q:$$
n-torsion group $(p\nmid n)$
$$E[n]=\langle P,Q\rangle\simeq \mathbb{Z}/n\mathbb{Z}\oplus \mathbb{Z}/n\mathbb{Z}$$

Supersingular curves:

- $\operatorname{End}(E) \simeq \mathcal{O}_{\max} \subset \mathcal{B}_{p,\infty}$
- defined over \mathbb{F}_{p^2} and $E(\mathbb{F}_{p^2}) \simeq \mathbb{Z}/(p \pm 1)\mathbb{Z} \oplus \mathbb{Z}/(p \pm 1)\mathbb{Z}$

Dual d-isogeny: $\varphi : E \to E' \iff \exists !^* \hat{\varphi} : E' \to E$, such that $\hat{\varphi} \circ \varphi = [d]_E$ and $\varphi \circ \hat{\varphi} = [d]_{E'}$.

We have

$$\ker \hat{\varphi} = \varphi(E[d]) \quad \text{and} \quad \ker \varphi = \hat{\varphi}(E'[d]).$$

Pairings and isogenies: $\phi : E \longrightarrow E', E[N] = \langle P, Q \rangle$, then $e_N(\phi(P), \phi(Q)) = e_N(P, Q)^{\deg \phi}$

More facts about isogenies

$$E/\mathbb{F}_q$$
: n-torsion group $(p \nmid n)$
$$E[n] = \langle P, Q \rangle \simeq \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$$

Supersingular curves:

- $\operatorname{End}(E) \simeq \mathcal{O}_{\max} \subset \mathcal{B}_{p,\infty}$
- defined over \mathbb{F}_{p^2} and $E(\mathbb{F}_{p^2}) \simeq \mathbb{Z}/(p \pm 1)\mathbb{Z} \oplus \mathbb{Z}/(p \pm 1)\mathbb{Z}$

Dual d-isogeny: $\varphi : E \to E' \iff \exists !^* \ \hat{\varphi} : E' \to E$, such that $\hat{\varphi} \circ \varphi = [d]_E$ and $\varphi \circ \hat{\varphi} = [d]_{E'}$.

We have

$$\ker \hat{\varphi} = \varphi(E[d]) \quad \text{and} \quad \ker \varphi = \hat{\varphi}(E'[d]).$$

Pairings and isogenies: $\phi : E \longrightarrow E', E[N] = \langle P, Q \rangle$, then $e_N(\phi(P), \phi(Q)) = e_N(P, Q)^{\deg \phi}$
More facts about isogenies

$$E/\mathbb{F}_q$$
: n-torsion group $(p \nmid n)$
$$E[n] = \langle P, Q \rangle \simeq \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$$

Supersingular curves:

- $\operatorname{End}(E) \simeq \mathcal{O}_{\max} \subset \mathcal{B}_{p,\infty}$
- defined over \mathbb{F}_{p^2} and $E(\mathbb{F}_{p^2}) \simeq \mathbb{Z}/(p \pm 1)\mathbb{Z} \oplus \mathbb{Z}/(p \pm 1)\mathbb{Z}$

 $\begin{array}{lll} \text{Dual d-isogeny:} & \varphi: E \to E' \Longleftrightarrow \exists !^* \; \hat{\varphi}: E' \to E, & \text{such that} \\ \hat{\varphi} \circ \varphi = [d]_E \; \text{and} \; \varphi \circ \hat{\varphi} = [d]_{E'}. \end{array}$

We have

$$\ker \hat{\varphi} = \varphi(E[d]) \quad \text{and} \quad \ker \varphi = \hat{\varphi}(E'[d]).$$

Pairings and isogenies: $\phi : E \longrightarrow E', E[N] = \langle P, Q \rangle$, then $e_N(\phi(P), \phi(Q)) = e_N(P, Q)^{\deg \phi}$

More facts about isogenies

$$E/\mathbb{F}_q$$
: n-torsion group $(p \nmid n)$
$$E[n] = \langle P, Q \rangle \simeq \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$$

Supersingular curves:

- $\operatorname{End}(E) \simeq \mathcal{O}_{\max} \subset \mathcal{B}_{p,\infty}$
- defined over \mathbb{F}_{p^2} and $E(\mathbb{F}_{p^2}) \simeq \mathbb{Z}/(p \pm 1)\mathbb{Z} \oplus \mathbb{Z}/(p \pm 1)\mathbb{Z}$

Dual d-isogeny: $\varphi: E \to E' \iff \exists !^* \ \hat{\varphi}: E' \to E$, such that $\hat{\varphi} \circ \varphi = [d]_E$ and $\varphi \circ \hat{\varphi} = [d]_{E'}$.

We have

$$\ker \hat{\varphi} = \varphi(E[d]) \quad \text{and} \quad \ker \varphi = \hat{\varphi}(E'[d]).$$

Pairings and isogenies: $\phi : E \longrightarrow E', E[N] = \langle P, Q \rangle$, then $e_N(\phi(P), \phi(Q)) = e_N(P, Q)^{\deg \phi}$ **SSI-T Problem**: Given E_0 , $E[B] = \langle P, Q \rangle$, E, $\phi(P)$, $\phi(Q)$, compute ϕ .

Degree transformation: define a map Γ that can be used to transform ϕ to $\tau = \Gamma(\phi, input)$ such that:

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ
- 2. τ can be evaluated on the B-torsion
- 3. τ can be recovered from its action on the B-torsion

The attack: Given a suitable description of Γ ,

- Use 2. and 3. to recover τ
- Use 1. to derive ϕ from τ

Assumes that $\operatorname{End}(E_0)$ is known. $input = [\theta \in End(E_0), d \in \mathbb{Z}].$

$$\tau = \Gamma(\phi, \theta, d) := [d] + \phi \circ \theta \circ \hat{\phi}$$

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ
- 2. τ can be evaluated on the B-torsion
- 3. τ can be recovered from its action on the B-torsion

Assumes that $\operatorname{End}(E_0)$ is known. $input = [\theta \in End(E_0), d \in \mathbb{Z}].$

$$\boldsymbol{\tau} = \boldsymbol{\Gamma}(\boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{d}) := [\boldsymbol{d}] + \boldsymbol{\phi} \circ \boldsymbol{\theta} \circ \hat{\boldsymbol{\phi}}$$

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ
- 2. τ can be evaluated on the *B*-torsion
- 3. τ can be recovered from its action on the B-torsion

Assumes that $\operatorname{End}(E_0)$ is known. $input = [\theta \in End(E_0), d \in \mathbb{Z}].$

$$\boldsymbol{\tau} = \boldsymbol{\Gamma}(\boldsymbol{\phi},\boldsymbol{\theta},d) := [d] + \boldsymbol{\phi} \circ \boldsymbol{\theta} \circ \hat{\boldsymbol{\phi}}$$

s.t. deg $\tau = B^2 e$ with e small.

1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ

- 2. τ can be evaluated on the B-torsion
- 3. τ can be recovered from its action on the B-torsion

Assumes that $\operatorname{End}(E_0)$ is known. $input = [\theta \in End(E_0), d \in \mathbb{Z}].$

$$\boldsymbol{\tau} = \boldsymbol{\Gamma}(\boldsymbol{\phi},\boldsymbol{\theta},d) := [d] + \boldsymbol{\phi} \circ \boldsymbol{\theta} \circ \hat{\boldsymbol{\phi}}$$

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover $\phi \checkmark$
- 2. τ can be evaluated on the B-torsion
- 3. τ can be recovered from its action on the B-torsion

$$\ker \hat{\phi} =^* \ker(\tau - [d]) \cap E[A]$$

Assumes that $\operatorname{End}(E_0)$ is known. $input = [\theta \in End(E_0), d \in \mathbb{Z}].$

$$\boldsymbol{\tau} = \boldsymbol{\Gamma}(\boldsymbol{\phi},\boldsymbol{\theta},d) := [d] + \boldsymbol{\phi} \circ \boldsymbol{\theta} \circ \hat{\boldsymbol{\phi}}$$

Assumes that $\operatorname{End}(E_0)$ is known. $input = [\theta \in End(E_0), d \in \mathbb{Z}].$

$$\boldsymbol{\tau} = \boldsymbol{\Gamma}(\boldsymbol{\phi},\boldsymbol{\theta},d) := [d] + \boldsymbol{\phi} \circ \boldsymbol{\theta} \circ \hat{\boldsymbol{\phi}}$$

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ
- 2. τ can be evaluated on the *B*-torsion \checkmark
- 3. τ can be recovered from its action on the B-torsion \checkmark

Assumes that $\operatorname{End}(E_0)$ is known. $input = [\theta \in End(E_0), d \in \mathbb{Z}].$

$$\boldsymbol{\tau} = \boldsymbol{\Gamma}(\boldsymbol{\phi},\boldsymbol{\theta},d) := [d] + \boldsymbol{\phi} \circ \boldsymbol{\theta} \circ \hat{\boldsymbol{\phi}}$$

CD-MM-R 2022

Assume $\phi : E_0 \longrightarrow E_B$ has degree B and the TP have order A. Set $a = A - B = a_1^2 + a_2^2 + a_3^2 + a_4^2$.

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

where

- $\phi Id_4: E_0^4 \longrightarrow E_B^4 \text{ and } \hat{\phi} Id_4: E_B^4 \longrightarrow E_0^4$
- $\alpha_0 \in \operatorname{End}(E_0^4)$ and $\alpha_B \in \operatorname{End}(E_B^4)$ having the same matrix representation

$$M = \begin{bmatrix} a_1 & -a_2 & -a_3 & -a_4 \\ a_2 & a_1 & a_4 & -a_3 \\ a_3 & -a_4 & a_1 & a_2 \\ a_4 & a_3 & -a_2 & a_1 \end{bmatrix}$$

Assume $\phi: E_0 \longrightarrow E_B$ has degree B and the TP have order A. Set $a = A - B = a_1^2 + a_2^2 + a_3^2 + a_4^2$.

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

Fact: $\pmb{\tau}$ has degree B+a=A

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ
- 2. τ can be evaluated on the A-torsion
- 3. τ can be recovered from its action on the A-torsion

Assume $\phi : E_0 \longrightarrow E_B$ has degree B and the TP have order A. Set $a = A - B = a_1^2 + a_2^2 + a_3^2 + a_4^2$.

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

Fact: τ has degree B+a=A

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover $\phi \checkmark$
- 2. τ can be evaluated on the A-torsion
- 3. τ can be recovered from its action on the A-torsion

Assume $\phi: E_0 \longrightarrow E_B$ has degree B and the TP have order A. Set $a = A - B = a_1^2 + a_2^2 + a_3^2 + a_4^2$.

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

Fact: τ has degree B + a = A

1. Knowing $\tau = \Gamma(\phi, input)$, one can recover $\phi \checkmark$

2. τ can be evaluated on the A-torsion \checkmark

3. τ can be recovered from its action on the A-torsion

Assume $\phi: E_0 \longrightarrow E_B$ has degree B and the TP have order A. Set $a = A - B = a_1^2 + a_2^2 + a_3^2 + a_4^2$.

$$\tau = \Gamma(\phi, a) := \begin{bmatrix} \alpha_0 & \hat{\phi} I d_4 \\ -\phi I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

Fact: τ has degree B + a = A

1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ

2. τ can be evaluated on the A-torsion \checkmark

3. τ can be recovered from its action on the A-torsion \checkmark

CD-MM-R 2022

Assume $\phi : E_0 \longrightarrow E_B$ has degree B and the TP have order A. Set $a = A - B = a_1^2 + a_2^2 + a_3^2 + a_4^2$.

$$\boldsymbol{\tau} = \Gamma(\boldsymbol{\phi}, a) := \begin{bmatrix} \alpha_0 & \hat{\boldsymbol{\phi}} I d_4 \\ -\boldsymbol{\phi} I d_4 & \hat{\alpha}_B \end{bmatrix} \in \operatorname{End}(E_0^4 \times E_B^4)$$

Fact: τ has degree B + a = A

- 1. Knowing $\tau = \Gamma(\phi, input)$, one can recover ϕ
- 2. τ can be evaluated on the A-torsion \checkmark
- 3. τ can be recovered from its action on the A-torsion \checkmark

Runs in polynomial time when $A^2 > B$!! Breaks SIDH/SIKE/SETA/...

Masked degree SIDH

Masked degree SIDH

Ambient field: \mathbb{F}_{p^2} , $p = \ell_1^{a_1} \cdots \ell_t^{a_t} q_1^{b_1} \cdots q_t^{b_t} f - 1$ $A := \prod_{i=1}^t \ell_i^{a_i} \qquad B := \prod_{i=1}^t q_i^{b_i}, \quad A \approx B.$ $\deg \phi_A = A', \quad A' | A, \quad \deg \phi_B = B', \quad B' | B.$ $E_0[A] = \langle P_A, Q_A \rangle, \quad E_0[B] = \langle P_B, Q_B \rangle$

Masked degree SIDH

 $\begin{array}{ll} \text{Ambient field: } \mathbb{F}_{p^2}, \ p = \ell_1^{a_1} \cdots \ell_t^{a_t} q_1^{b_1} \cdots q_t^{b_t} f - 1 \\ A := \prod_{i=1}^t \ell_i^{a_i} \qquad B := \prod_{i=1}^t q_i^{b_i}, \quad A \approx B. \\ \deg \phi_A = A', \quad A' | A, \qquad \deg \phi_B = B', \quad B' | B. \\ E_0[A] = \langle P_A, Q_A \rangle, \quad E_0[B] = \langle P_B, Q_B \rangle \\ \text{Hide the degree from pairings: } \alpha \in (\mathbb{Z}/B\mathbb{Z})^{\times} \quad \beta \in (\mathbb{Z}/A\mathbb{Z})^{\times} \end{array}$

Masked torsion points SIDH

 $\begin{array}{ll} \text{Ambient field: } \mathbb{F}_{p^2}, \ p = \ell_1 \cdots \ell_\lambda q_1 \cdots q_\lambda f - 1 \\ A := \prod_{i=1}^{\lambda} \ell_i \qquad B := \prod_{i=1}^{\lambda} q_i, \quad A \approx B. \\ \deg \phi_A = A, \qquad \deg \phi_B = B. \\ E_0[A] = \langle P_A, Q_A \rangle, \quad E_0[B] = \langle P_B, Q_B \rangle \\ \text{Hide the exact TP images:} \quad \alpha \in \mu_2(\mathbb{Z}/B\mathbb{Z}) \quad \beta \in \mu_2(\mathbb{Z}/A\mathbb{Z}) \end{array}$

Analysis of the countermeasures

CD-MM-R attack : works when $A^2 > B$. In M-SIDH, $A \approx B = (\sqrt{B})^2$.

Hence we can use less torsion $B' = \prod_{i=t}^{\lambda} \ell_i > \sqrt{B}$.

Guessing the exact torsion point: $O(2^{\lambda-t})$

Consequence: A and B must have at least 2λ distinct prime factors each.

Given a small $\theta \in End(E_0)$, eliminate the scalar β in M-SIDH:

With respect to the A torsion, we have:

 $([\beta]\phi_B)\circ\theta\circ(\widehat{[\beta]\phi_B})=[\beta^2]\circ\phi_B\circ\theta\circ\widehat{\phi_B}\equiv\phi_B\circ\theta\circ\widehat{\phi_B}=:\tau.$

 $\deg \tau = B^2 \deg \theta.$

CD-MM-R on τ requires : $\sqrt{\deg \tau} = B\sqrt{\deg \theta} \approx B$ (for small θ).

Consequence: No small endomorphisms in E_0 , if possible, no known endomorphism at all.

Given a small $\theta \in End(E_0)$, eliminate the scalar β in M-SIDH:

With respect to the A torsion, we have:

 $([\beta]\phi_B)\circ\theta\circ(\widehat{[\beta]\phi_B})=[\beta^2]\circ\phi_B\circ\theta\circ\widehat{\phi_B}\equiv\phi_B\circ\theta\circ\widehat{\phi_B}=:\tau.$

 $\deg \tau = B^2 \deg \theta$. CD-MM-R on τ requires : $\sqrt{\deg \tau} = B\sqrt{\deg \theta} \approx B$ (for small θ **Consequence:** No small endomorphisms in E_0 , if possible, no known endomorphism at all.

Given a small $\theta \in End(E_0)$, eliminate the scalar β in M-SIDH:

With respect to the A torsion, we have:

 $([\beta]\phi_B)\circ\theta\circ(\widehat{[\beta]\phi_B})=[\beta^2]\circ\phi_B\circ\theta\circ\widehat{\phi_B}\equiv\phi_B\circ\theta\circ\widehat{\phi_B}=:\tau.$

 $\deg \tau = B^2 \deg \theta.$

CD-MM-R on τ requires : $\sqrt{\deg \tau} = B\sqrt{\deg \theta} \approx B$ (for small θ).

Consequence: No small endomorphisms in E_0 , if possible, no known endomorphism at all.

Given a small $\theta \in End(E_0)$, eliminate the scalar β in M-SIDH:

With respect to the A torsion, we have:

 $([\beta]\phi_B)\circ\theta\circ(\widehat{[\beta]\phi_B})=[\beta^2]\circ\phi_B\circ\theta\circ\widehat{\phi_B}\equiv\phi_B\circ\theta\circ\widehat{\phi_B}=:\tau.$

 $\deg \tau = B^2 \deg \theta.$

CD-MM-R on τ requires : $\sqrt{\deg \tau} = B\sqrt{\deg \theta} \approx B$ (for small θ). Consequence: No small endomorphisms in E_0 , if possible, no known endomorphism at all.

Recall: deg $\phi_B = B'|B$, TP are scaled by $\beta \in \mathbb{Z}/B\mathbb{Z}$.

Pairings are used to recover $\beta^2 B' \mod A$. Define:

$$\chi_i \colon (\mathbb{Z}/\ell_i^{a_i}\mathbb{Z})^{\times} \longrightarrow \mathbb{Z}/2\mathbb{Z}$$
$$x \longmapsto \begin{cases} 1 & \text{if x is a quad. residue modulo } \ell_i^{b_i};\\ 0 & \text{if not.} \end{cases}$$

$$\begin{array}{cccc} \Phi \colon & D(q_1 \cdots q_t) & \longrightarrow & (\mathbb{Z}/2\mathbb{Z})^t \\ & N & \longmapsto & (\chi_1(N), \dots, \chi_t(N)) \end{array}$$

Claims:

- We can evaluate Φ on the square free part of B'
- Φ is almost injective.

Recall: deg $\phi_B = B'|B$, TP are scaled by $\beta \in \mathbb{Z}/B\mathbb{Z}$. Pairings are used to recover $\beta^2 B' \mod A$. Define:

$$\begin{array}{rccc} \chi_i \colon & (\mathbb{Z}/\ell_i^{a_i}\mathbb{Z})^{\times} & \longrightarrow & \mathbb{Z}/2\mathbb{Z} \\ & x & \longmapsto & \begin{cases} 1 & \text{if x is a quad. residue modulo } \ell_i^{b_i}; \\ 0 & \text{if not.} \end{cases} \end{array}$$

$$\begin{array}{cccc} \Phi \colon & D(q_1 \cdots q_t) & \longrightarrow & (\mathbb{Z}/2\mathbb{Z})^t \\ & N & \longmapsto & (\chi_1(N), \dots, \chi_t(N)) \end{array}$$

Claims:

- We can evaluate Φ on the square free part of B'
- Φ is almost injective.

Recall: deg $\phi_B = B'|B$, TP are scaled by $\beta \in \mathbb{Z}/B\mathbb{Z}$. Pairings are used to recover $\beta^2 B' \mod A$. Define:

$$\begin{array}{rccc} \chi_i \colon & (\mathbb{Z}/\ell_i^{a_i}\mathbb{Z})^{\times} & \longrightarrow & \mathbb{Z}/2\mathbb{Z} \\ & x & \longmapsto & \begin{cases} 1 & \text{if x is a quad. residue modulo } \ell_i^{b_i}; \\ 0 & \text{if not.} \end{cases} \end{array}$$

$$\begin{array}{cccc} \Phi \colon & D(q_1 \cdots q_t) & \longrightarrow & (\mathbb{Z}/2\mathbb{Z})^t \\ & N & \longmapsto & (\chi_1(N), \dots, \chi_t(N)) \end{array}$$

Claims:

- We can evaluate Φ on the square free part of B'
- Φ is almost injective.

Recall: deg $\phi_B = B'|B$, TP are scaled by $\beta \in \mathbb{Z}/B\mathbb{Z}$. Pairings are used to recover $\beta^2 B' \mod A$. Define:

$$\begin{array}{rccc} \chi_i \colon & (\mathbb{Z}/\ell_i^{a_i}\mathbb{Z})^{\times} & \longrightarrow & \mathbb{Z}/2\mathbb{Z} \\ & x & \longmapsto & \begin{cases} 1 & \text{if x is a quad. residue modulo } \ell_i^{b_i}; \\ 0 & \text{if not.} \end{cases} \end{array}$$

$$\begin{array}{cccc} \Phi \colon & D(q_1 \cdots q_t) & \longrightarrow & (\mathbb{Z}/2\mathbb{Z})^t \\ & N & \longmapsto & (\chi_1(N), \dots, \chi_t(N)) \end{array}$$

Claims:

- We can evaluate Φ on the square free part of B'
- Φ is almost injective.

Assume that we know B'_1 . Set $B_0 = \max\{n \mid n \mid B, n^2 B'_1 \leq B\}$. Then $\exists \beta_0$, divisor of B, $N_B := B_0^2 B'_1 = \beta_0^2 B' \leq B$.

Set $\phi_0 = [\beta_0] \circ \phi_B$, then $\deg(\phi_0) = N_B$ is known.

$$P' = [\beta]\phi(P) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi(P) = [\beta\beta_0^{-1}]\phi_0(P)$$

$$Q' = [\beta]\phi(Q) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi(Q) = [\beta\beta_0^{-1}]\phi_0(Q)$$

Compute: $\beta_1^2 = \beta_0^2 B' \cdot (\beta^2 B')^{-1} \mod A = (\beta_0 \cdot \beta^{-1})^2 \mod A$. Sampling β_1' in $\sqrt{\beta_1^2 \mod A}$, then $\beta_1' = \mu \beta_1$ where $\mu \in \mu_2(\mathbb{Z}/A\mathbb{Z})$.

$$[\beta'_1]P' = [\mu \cdot \beta_1]P' = [\mu]\phi_0(P) [\beta'_1]Q' = [\mu \cdot \beta_1]P' = [\mu]\phi_0(Q)$$

Assume that we know B'_1 . Set $B_0 = \max\{n \mid n \mid B, n^2 B'_1 \leq B\}$. Then $\exists \beta_0$, divisor of B, $N_B := B_0^2 B'_1 = \beta_0^2 B' \leq B$.

Set $\phi_0 = [\beta_0] \circ \phi_B$, then $\deg(\phi_0) = N_B$ is known.

$$P' = [\beta]\phi(P) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi(P) = [\beta\beta_0^{-1}]\phi_0(P)$$

$$Q' = [\beta]\phi(Q) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi(Q) = [\beta\beta_0^{-1}]\phi_0(Q)$$

Compute: $\beta_1^2 = \beta_0^2 B' \cdot (\beta^2 B')^{-1} \mod A = (\beta_0 \cdot \beta^{-1})^2 \mod A$. Sampling β_1' in $\sqrt{\beta_1^2 \mod A}$, then $\beta_1' = \mu \beta_1$ where $\mu \in \mu_2(\mathbb{Z}/A\mathbb{Z})$.

$$[\beta'_1]P' = [\mu \cdot \beta_1]P' = [\mu]\phi_0(P) [\beta'_1]Q' = [\mu \cdot \beta_1]P' = [\mu]\phi_0(Q)$$

Assume that we know B'_1 . Set $B_0 = \max\{n \mid n \mid B, n^2 B'_1 \leq B\}$. Then $\exists \beta_0$, divisor of B, $N_B := B_0^2 B'_1 = \beta_0^2 B' \leq B$.

Set $\phi_0 = [\beta_0] \circ \phi_B$, then $\deg(\phi_0) = N_B$ is known.

$$P' = [\beta]\phi(P) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi(P) = [\beta\beta_0^{-1}]\phi_0(P)$$

$$Q' = [\beta]\phi(Q) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi(Q) = [\beta\beta_0^{-1}]\phi_0(Q)$$

Compute: $\beta_1^2 = \beta_0^2 B' \cdot (\beta^2 B')^{-1} \mod A = (\beta_0 \cdot \beta^{-1})^2 \mod A$. Sampling β_1' in $\sqrt{\beta_1^2 \mod A}$, then $\beta_1' = \mu \beta_1$ where $\mu \in \mu_2(\mathbb{Z}/A\mathbb{Z})$.

$$[\beta'_1]P' = [\mu \cdot \beta_1]P' = [\mu]\phi_0(P) [\beta'_1]Q' = [\mu \cdot \beta_1]P' = [\mu]\phi_0(Q)$$

Assume that we know B'_1 . Set $B_0 = \max\{n \mid n \mid B, n^2 B'_1 \leq B\}$. Then $\exists \beta_0$, divisor of B, $N_B := B_0^2 B'_1 = \beta_0^2 B' \leq B$.

Set $\phi_0 = [\beta_0] \circ \phi_B$, then $\deg(\phi_0) = N_B$ is known.

$$P' = [\beta]\phi(P) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi(P) = [\beta\beta_0^{-1}]\phi_0(P)$$

$$Q' = [\beta]\phi(Q) = [(\beta\beta_0^{-1}) \cdot \beta_0]\phi(Q) = [\beta\beta_0^{-1}]\phi_0(Q)$$

Compute: $\beta_1^2 = \beta_0^2 B' \cdot (\beta^2 B')^{-1} \mod A = (\beta_0 \cdot \beta^{-1})^2 \mod A$. Sampling β_1' in $\sqrt{\beta_1^2 \mod A}$, then $\beta_1' = \mu \beta_1$ where $\mu \in \mu_2(\mathbb{Z}/A\mathbb{Z})$.

$$[\beta'_1]P' = [\mu \cdot \beta_1]P' = [\mu]\phi_0(P) [\beta'_1]Q' = [\mu \cdot \beta_1]P' = [\mu]\phi_0(Q)$$

Adaptive security and parameters size

- GPST and the F-Petit adaptive attacks on M-SIDH: straightforward.
- FP adaptive attack on MD-SIDH: uses the reduction of MD-SIDH to M-SIDH.
- GPST on MD-SIDH: not straightforward, but possible.

Parameter selection:

- $n|B, n > \sqrt{B} \longrightarrow \lambda$ odd prime factors.
- $End(E_0)$ unknown

AES	NIST	p (in bits)	secret key	public key
128	level 1	5911	≈ 369 by tes	4434 bytes
192	level 3	9382	≈ 586 by tes	7037 bytes
256	level 5	13000	≈ 812 by tes	9750 bytes
Successfully applies CD attack on M-SIDH with SIDH primes.

Claims that it will also be successfull with M-SIDH primes.

Success rate of CD attack on M-SIDH with SIDH primes: Expected : 1/2 Observed : 1.

Successfully applies CD attack on M-SIDH with SIDH primes.

Claims that it will also be successfull with M-SIDH primes.

Success rate of CD attack on M-SIDH with SIDH primes: Expected : 1/2 Observed : 1.

Successfully applies CD attack on M-SIDH with SIDH primes.

Claims that it will also be successfull with M-SIDH primes.

Success rate of CD attack on M-SIDH with SIDH primes: Expected : 1/2 Observed : 1.

Successfully applies CD attack on M-SIDH with SIDH primes.

Claims that it will also be successfull with M-SIDH primes.

Success rate of CD attack on M-SIDH with SIDH primes: Expected : 1/2 Observed : 1.

Torsion points were there to make SIDH work. But today, they killed SIDH.

Two countermeasure ideas were suggested and analysed: M-SIDH and MD-SIDH.

Outcome of the analysis: field characteristic must be at least ≈ 6000 bits !

Still vulnerable to adaptive attacks. Require FO to achieve IND-CCA security.

Torsion points were there to make SIDH work.

But today, they killed SIDH.

Two countermeasure ideas were suggested and analysed: M-SIDH and MD-SIDH.

Outcome of the analysis: field characteristic must be at least ≈ 6000 bits !

Still vulnerable to adaptive attacks. Require FO to achieve IND-CCA security.

Torsion points were there to make SIDH work.

But today, they killed SIDH.

Two countermeasure ideas were suggested and analysed: M-SIDH and MD-SIDH.

Outcome of the analysis: field characteristic must be at least ≈ 6000 bits !

Still vulnerable to adaptive attacks. Require FO to achieve IND-CCA security.

Torsion points were there to make SIDH work.

But today, they killed SIDH.

Two countermeasure ideas were suggested and analysed: M-SIDH and MD-SIDH.

Outcome of the analysis: field characteristic must be at least ≈ 6000 bits !

Still vulnerable to adaptive attacks. Require FO to achieve IND-CCA security.

Happy to discuss your comments and questions !!!