Algebraic Techniques to solve the Regular Syndrome Decoding Problem

Pierre Briaud¹, joint work with Morten Øygarden².

Rennes, December 16

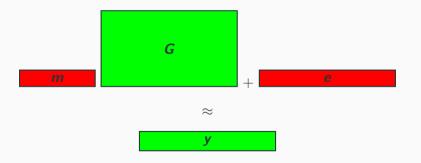
¹Inria Paris & Sorbonne Université ²Simula UiB

Decoding Problem (DP) over \mathbb{F}_q (aka Primal LPN)

Given full-rank $\boldsymbol{G} \in \mathbb{F}_q^{k \times n}$, distinguish

•
$$y = mG + e, m \in \mathbb{F}_q^k$$
, error $e \sim \chi$

•
$$\mathbf{y} \sim \mathcal{U}(\mathbb{F}_q^n)$$



Bounded number of samples $n = k^{1+\alpha}$, $0 < \alpha < 1$

Error e of low Hamming weight, |e| = t

 \rightarrow Coding theory point of view ! Length n, dim. k, code rate $R \stackrel{def}{=} k/n$

Underlying code ${\mathcal C}$

$$\mathcal{C} \stackrel{\mathsf{def}}{=} \left\{ \boldsymbol{m} \boldsymbol{G}, \ \boldsymbol{m} \in \mathbb{F}_q^k
ight\} = \left\{ \boldsymbol{x} \in \mathbb{F}_q^n, \ \boldsymbol{x} \boldsymbol{H}^\mathsf{T} = \boldsymbol{0}
ight\}, \ \boldsymbol{H} \in \mathbb{F}_q^{(n-k) imes n}$$

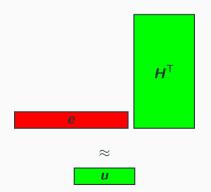
"Philosophical" difference ? Error distribution χ

B., Øygarden

Syndrome Decoding (SD) Problem (aka Dual LPN)

Given full-rank $\boldsymbol{H} \in \mathbb{F}_{q}^{(n-k) \times n}$, distinguish

- $\boldsymbol{u} = \boldsymbol{e}\boldsymbol{H}^{\mathsf{T}} \in \mathbb{F}_q^{n-k}, \ \boldsymbol{e} \sim \chi$
- $\boldsymbol{u} \sim \mathcal{U}(\mathbb{F}_q^{n-k})$



- Symmetric crypto [HB01]
- PKE: Alekhnovich scheme [Ale03]

Pseudorandom correlation generators (PCGs): correlated randomness [Boy+19]

- PRG $(m, e) \mapsto mG + e$ or $e \mapsto eH^{T}$ (correlated seeds) + Function Secret Sharing
- used to build secure MPC, ZK proofs ...

Non-standard parameters

LOW noise (inverse poly, not constant) \rightarrow Very large sizes Possibly large field (typically $\mathbb{F}_{2^{128}}$)

ex: $\lambda = 128$ over \mathbb{F}_2 , $(n = 2^{22}, k = 67440, t = 4788)$ [Boy+19]; [Liu+22]

Regular SD (RSD)

Assume $n = N \times t$ for some $N \in \mathbb{N}$ (blocksize)

Regular distribution [AFS05]

- For $1 \le i \le t$, sample $e_i \in \mathbb{F}_q^N$ random of weight 1
- Final error is $\boldsymbol{e} \stackrel{def}{=} (\boldsymbol{e}_1, \dots, \boldsymbol{e}_t) \in \mathbb{F}_q^n$

Introduction in Secure Computation [Haz+18] Now used in many protocols [Boy+19]; [Wen+20]; [Yan+20] ...

 \rightarrow Reduce Function Secret Sharing cost

[Haz+18] Hazay et al. TinyKeys: A New Approach to Efficient Multi-Party Computation.

[[]AFS05] Augot, Finiasz, and Sendrier. "A Family of Fast Syndrome Based Cryptographic Hash Functions". MYCRYPT 2005.

Attacks on Plain SD ! Do NOT exploit regular distribution:

- "Folklore attack" and ISD algorithms [Pra62]; [MMT11]; [MO15]...
- Statistical Decoding [Jab01] (recently improved by [Car+22])

What about algebraic techniques ?

[[]Pra62] Prange. "The use of information sets in decoding cyclic codes".

[[]Jab01] Jabri. "A Statistical Decoding Algorithm for General Linear Block Codes".

[[]Car+22] Carrier et al. Statistical Decoding 2.0: Reducing Decoding to LPN.

Generic technique in cryptanalysis:

- Model scheme or hard problem as polynomial system
- Solve it ! (Gröbner Bases, linearization)

$1^{\mbox{\scriptsize st}}$ algebraic attack on RSD

- competitive for very small code rates \leftrightarrow enough samples
- algebraic system + detailed analysis

(Naive) algebraic system

Modeling regular structure

Polynomial ring $R \stackrel{\text{def}}{=} \mathbb{F}_q[(e_{i,j})_{i,j}]$ in *n* variables, block $e_i \stackrel{\text{def}}{=} (e_{i,1}, \dots, e_{i,N}) \in \mathbb{F}_q^N$

Coordinates $\in \mathbb{F}_q$ (field equations)

$$orall i, \ orall j, \ e^q_{i,j}-e_{i,j}=0.$$

One \neq 0 coordinate per block

$$\forall i, \ \forall j_1 \neq j_2, \ e_{i,j_1}e_{i,j_2} = 0.$$
 (2)

Over \mathbb{F}_2 , this coordinate is 1

$$\forall i, \ \sum_{j=1}^{N} e_{i,j} = 1.$$
(3)

We consider quadratic system $Q \stackrel{def}{=} (1) \cup (2) \cup (3)$

B., Øygarden

Algebraic Techniques to solve the RSD Problem

(1)

Linear equations in the $e_{i,j}$'s from $eH^{T} = u$:

Parity-checks

$$\mathcal{P} \stackrel{\text{def}}{=} \{ \forall i \in \{1..n-k\}, \ \langle \boldsymbol{e}, \boldsymbol{h}_i \rangle - u_i = 0 \}$$

Final system $\mathcal{S} \stackrel{def}{=} \mathcal{P} \cup \mathcal{Q}$.

Set of solutions to S = Set of solutions to RSD (let's say 1)

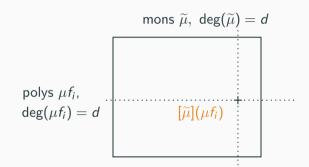
Cost of System Solving !

- Known for random systems (or at least for well-studied ones)
- ${\mathcal S}$ neither random nor well-studied ...

Solving Algorithms

- 1. multiply eqs by all monomials μ : \rightarrow polys μf_i , f_i initial eq
- 2. store them in matrix, fixed degree $d = deg(\mu f_i)$
- 3. do linear algebra

Matrix of size $\exp(d)$



What do we need ? Highest degree d = D for a Macaulay matrix B., Øygarden

Analyzing \mathcal{S}

Recall that
$$S = \{\underbrace{\text{parity-checks}}_{\mathcal{P}}\} \cup \{\underbrace{\text{regular structure}}_{\mathcal{Q}}\}$$

$$\mathcal{P} = \{\forall i \in \{1..n - k\}, \langle \boldsymbol{e}, \boldsymbol{h}_i \rangle - u_i\}$$

 $\mathcal{Q} = \{ \forall i \in \{1..t\}, \forall j \in \{1..N\}, \ e_{i,j}^2 - e_{i,j} \} \cup \{ \forall i, \forall j_1 \neq j_2, \ e_{i,j_1}e_{i,j_2} \} \cup \{ \forall i, \ \sum_{j=1}^N e_{i,j} - 1 \}$

- To keep internal structure, treat \mathcal{P} and \mathcal{Q} separately
- Focus on homogeneous parts: $\langle S^{(h)} \rangle = \langle \mathcal{P}^{(h)} \rangle + \langle \mathcal{Q}^{(h)} \rangle$

Highest degree from Hilbert Series

Polynomial ring $R \stackrel{def}{=} \mathbb{F}_q[(e_{i,j})_{i,j}], R = \bigoplus_{d \in \mathbb{N}} R_d$ hom. components Hom. ideal $I \stackrel{def}{=} \langle f_1, \dots, f_m \rangle, I_d \stackrel{def}{=} I \cap R_d$

Hilbert Series (HS) of /

Contains properties of I we need (in particular highest degree D)

 \rightarrow Find Hilbert Series for $\langle S^{(h)} \rangle$ then deduce D

Formal definition:

$$\mathcal{H}_{R/I}(z) \stackrel{def}{=} \sum_{d \in \mathbb{N}} \dim (R_d/I_d) z^d$$

0-dimensional ideal $(\mathcal{H}_{R/I}(z) \text{ is a polynomial})$: $H(I) \stackrel{\text{def}}{=} \min \{\delta \in \mathbb{N}, I_{\delta} = R_{\delta}\}$ (index)

Structural part ${\cal Q}$

Only depends on regular distribution. We analyze q = 2 (e.g. we can use (3)) $\mathcal{Q}^{(h)} = \underbrace{\{\forall i \in \{1..t\}, \forall j \in \{1..N\}, e_{i,j}^2\}}_{(1)} \cup \underbrace{\{\forall i, \forall j_1 \neq j_2, e_{i,j_1}e_{i,j_2}\}}_{(2)} \cup \underbrace{\{\forall i, \sum_{j=1}^N e_{i,j}\}}_{(3)}$

HS 1

We have dim $(R_d/\langle Q^{(h)} \rangle_d) = {t \choose d} (N-1)^d$. Thus,

$$\mathcal{H}_{R/\langle \mathcal{Q}^{(h)} \rangle}(z) = (1 + (N-1)z)^t$$

Proof (monomial counting).

Using (1) and (2), squarefree + at most one variable per e_i block Using (3), we get rid of one variable per e_i block

B., Øygarden

Random part \mathcal{P}

We have $\mathcal{P}^{(h)} = \{ \boldsymbol{eH}^{\mathsf{T}} \}$. By assumption on \boldsymbol{H} , "random" linear equations

- but we want "randomness" in $R/\langle Q^{(h)} \rangle$
- here, randomness means (semi)-regularity:

Semi-regularity over \mathbb{F}_2 [Bar04]

Let $S \stackrel{def}{=} \mathbb{F}_2[e]/\langle e^2 \rangle$, $\mathcal{F} = \{f_1, \ldots, f_m\}$ homogeneous, 0-dim, index $d_{\langle \mathcal{F} \rangle}$ System \mathcal{F} is semi-regular over \mathbb{F}_2 if $\langle \mathcal{F} \rangle \neq S$ and if

 $\forall i, \ \deg(g_i f_i) < d_{\langle \mathcal{F} \rangle}, \ g_i f_i = 0 \in S/\langle f_1, \dots, f_{i-1} \rangle \Rightarrow g_i = 0 \in S/\langle f_1, \dots, f_i \rangle$ (4)

In this paper, we adapt it to $R/\langle Q^{(h)} \rangle$ instead of $R/\langle e^2 \rangle$

[[]Bar04] Bardet. "Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie".

Combining everything

Semi-regular HS are known ! (write exact sequences from (4))

Assumption

We assume semi-regularity of $\mathcal{P}^{(h)}$ with our new definition

We have $\langle S^{(h)} \rangle = \langle \mathcal{P}^{(h)} \rangle + \langle \mathcal{Q}^{(h)} \rangle$, we know $\mathcal{H}_{R/\langle \mathcal{Q}^{(h)} \rangle}$. We want $\mathcal{H}_{R/\langle S^{(h)} \rangle}$ Under Assumption, we get

$$\mathcal{H}_{R/\langle\mathcal{S}^{(h)}
angle}(z)=rac{\mathcal{H}_{R/\langle\mathcal{Q}^{(h)}
angle}(z)}{(1+z)^{n-k}}$$

HS for $S^{(h)}$ (under Assumption + using HS 1)

$$\mathcal{H}_{R/\langle \mathcal{S}^{(h)}
angle}(z)=rac{(1+(N-1)z)^{ au}}{(1+z)^{n-k}}$$

Solving S (more concretely)

- **Dense** linear algebra on Macaulay matrix $M_D \rightarrow$ row ech. form
- Cost exponential in D, $2 \le \omega < 3$:

$$\mathcal{T}_{\mathsf{solve}}(\mathcal{S}) = \mathcal{O}(\#\mathsf{cols}(\pmb{M}_D)^\omega) = \mathcal{O}\left({t \choose D}^\omega (N-1)^{\omega D}
ight)$$

Highest degree D from HS

Index of first < 0 coef. in $\mathcal{H}_{R/\langle S^{(h)} \rangle}$ + "Degree fall assumption": same *D* for $S^{(h)}$ and *S*

Hybrid approach I

Conjectured D may be too high to be practical

Hybrid approach (folklore & [BFP10])

Fix f variables + solve specialized system $S_{\text{spec},f}$

Hope: smaller D for $S_{\text{spec},f}$

 \rightarrow Guess $f \ge 0$ zero positions in *e* (as Prange but $f \ll k$)

• Simplest way: $u \stackrel{def}{=} f/t$ per block, success proba

$$\left(\frac{\binom{N-1}{u}}{\binom{N}{u}}\right)^t = (1 - u/N)^t$$

[[]BFP10] Bettale, Faugère, and Perret. "Hybrid approach for solving multivariate systems over finite fields".

Cost of solving $\mathcal{S}_{\text{spec},f}$? Same assumptions as for $\mathcal{S},$ same analysis:

$$\mathcal{H}_{R/\langle \mathcal{S}^{(h)}_{\mathrm{spec},f}\rangle}(z) = \frac{(1+(N-1-u)z)^t}{(1+z)^{n-k}}$$

Final complexity:

$$\mathcal{O}\left(\min_{0\leq u\leq N-1}\left\{(1-u/N)^{-t} imes \mathcal{T}_{\mathsf{solve}}(\mathcal{S}_{\mathsf{spec},u\cdot t})
ight\}
ight)$$

• Other ways to fix zeroes (inspired by ISDs ?). We analyze one more in the paper.

Use **sparse** linear algebra: $\searrow T_{solve}(.)$?

- Need XL-Wiedemann instead of Gröbner Basis
- Kernel of affine Macaulay matrix

XL at conjectured D may fail !

(need other parameter attached to affine systems: witness degree)

We relied on Magma

- Check Assumption: compute HS for both $\mathcal{S}^{(h)}$ and $\mathcal{S}^{(h)}_{\text{spec},f}$ (various f)
- Check Degree Fall assumption: steps of Magma's F4 on affine system
- To do: show that XL can work

Conclusion

Conjectured cost with Wiedemann

Parameters from Boyle *et al.* [Boy+19], updated analysis by Liu *et al.* [Liu+22] Large field: no more $\{\forall i, \sum_{j=1}^{N} e_{i,j} = 1\}$, fields eqs of high degree (that's ok)

n	k	t	\mathbb{F}_2 [Liu+22]	This work \mathbb{F}_2	$\mathbb{F}_{2^{128}}$ [Liu+22]	This work $\mathbb{F}_{2^{128}}$
2 ²²	64770	4788	147	104	156	111
2 ²⁰	32771	2467	143	<u>126</u>	155	<u>131</u>
2 ¹⁸	15336	1312	139	<u>123</u>	153	<u>133</u>
2 ¹⁶	7391	667	135	141	151	151
214	3482	338	132	140	150	152
2 ¹²	1589	172	131	136	155	<u>152</u>
2 ¹⁰	652	106	176	146	194	<u>180</u>

[Liu+22] Liu et al. The Hardness of LPN over Any Integer Ring and Field for PCG Applications.

B., Øygarden

- Sometimes beats Gauss/ISDs for low rates (Primal LPN)
- Zone with "constant" deg. $D \rightarrow \text{polynomial algorithm }$?

Similar to Arora-Gê modeling on LWE [AG11] (Polynomial for sufficiently many samples)

[[]AG11] Arora and Ge. "New Algorithms for Learning in Presence of Errors". Automata, Languages and Programming.