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Decoding Problem (DP) over Fq (aka Primal LPN)

Given full-rank G ∈ Fk×n
q , distinguish

• y = mG + e, m ∈ Fk
q, error e ∼ χ

• y ∼ U(Fn
q)

m

G

+ e

≈

y
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Our setting

Bounded number of samples n = k1+α, 0 < α < 1

Error e of low Hamming weight, |e| = t

→ Coding theory point of view ! Length n, dim. k, code rate R def= k/n

Underlying code C

C def=
{

mG, m ∈ Fk
q

}
=
{

x ∈ Fn
q, xHT = 0

}
, H ∈ F(n−k)×n

q

“Philosophical” difference ? Error distribution χ
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Syndrome Decoding (SD) Problem (aka Dual LPN)

Given full-rank H ∈ F(n−k)×n
q , distinguish

• u = eHT ∈ Fn−k
q , e ∼ χ

• u ∼ U(Fn−k
q )

e

HT

≈
u
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Some use cases

• Symmetric crypto [HB01]
• PKE: Alekhnovich scheme [Ale03]

Pseudorandom correlation generators (PCGs): correlated randomness [Boy+19]

• PRG (m, e) 7→ mG + e or e 7→ eHT (correlated seeds) + Function Secret Sharing
• used to build secure MPC, ZK proofs . . .

Non-standard parameters
LOW noise (inverse poly, not constant) → Very large sizes
Possibly large field (typically F2128)

ex: λ = 128 over F2, (n = 222, k = 67440, t = 4788) [Boy+19]; [Liu+22]
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Regular SD (RSD)

Assume n = N × t for some N ∈ N (blocksize)

Regular distribution [AFS05]

• For 1 ≤ i ≤ t, sample e i ∈ FN
q random of weight 1

• Final error is e def= (e1, . . . , et) ∈ Fn
q

Introduction in Secure Computation [Haz+18]
Now used in many protocols [Boy+19]; [Wen+20]; [Yan+20] . . .

→ Reduce Function Secret Sharing cost

[AFS05] Augot, Finiasz, and Sendrier. “A Family of Fast Syndrome Based Cryptographic Hash Functions”. MYCRYPT 2005.

[Haz+18] Hazay et al. TinyKeys: A New Approach to Efficient Multi-Party Computation.
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Known attacks on RSD

Attacks on Plain SD ! Do NOT exploit regular distribution:

• “Folklore attack” and ISD algorithms [Pra62]; [MMT11]; [MO15]. . .

• Statistical Decoding [Jab01]
(recently improved by [Car+22])

What about algebraic techniques ?

[Pra62] Prange. “The use of information sets in decoding cyclic codes”.

[Jab01] Jabri. “A Statistical Decoding Algorithm for General Linear Block Codes”.

[Car+22] Carrier et al. Statistical Decoding 2.0: Reducing Decoding to LPN.
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Algebraic attacks

Generic technique in cryptanalysis:

• Model scheme or hard problem as polynomial system

• Solve it ! (Gröbner Bases, linearization)
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This talk

1st algebraic attack on RSD

• competitive for very small code rates ↔ enough samples

• algebraic system + detailed analysis
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(Naive) algebraic system



Modeling regular structure

Polynomial ring R def= Fq[(ei ,j)i ,j ] in n variables, block e i
def= (ei ,1, . . . , ei ,N) ∈ FN

q

Coordinates ∈ Fq (field equations)

∀i , ∀j , eq
i ,j − ei ,j = 0. (1)

One 6= 0 coordinate per block

∀i , ∀j1 6= j2, ei ,j1ei ,j2 = 0. (2)

Over F2, this coordinate is 1

∀i ,
∑N

j=1 ei ,j = 1. (3)

We consider quadratic system Q def= (1) ∪ (2) ∪ (3)
B., Øygarden Algebraic Techniques to solve the RSD Problem Rennes, December 16 10 / 25



Adding parity-check equations

Linear equations in the ei ,j ’s from eHT = u:

Parity-checks

P def= {∀i ∈ {1..n − k}, 〈e,hi〉 − ui = 0} .

Final system S def= P ∪Q.

Set of solutions to S = Set of solutions to RSD (let’s say 1)
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Recurrent issue

Cost of System Solving !

• Known for random systems (or at least for well-studied ones)
• S neither random nor well-studied . . .

Solving Algorithms

1. multiply eqs by all monomials µ:
→ polys µfi , fi initial eq

2. store them in matrix, fixed degree d = deg (µfi )
3. do linear algebra
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Macaulay matrix Md

Matrix of size exp(d)

mons µ̃, deg(µ̃) = d

polys µfi ,
deg(µfi ) = d [µ̃](µfi )

What do we need ?
Highest degree d = D for a Macaulay matrix

B., Øygarden Algebraic Techniques to solve the RSD Problem Rennes, December 16 13 / 25



Analyzing S



Approach

Recall that S = {parity-checks︸ ︷︷ ︸
P

} ∪ {regular structure︸ ︷︷ ︸
Q

}

P = {∀i ∈ {1..n − k}, 〈e,hi〉 − ui}

Q = {∀i ∈ {1..t},∀j ∈ {1..N}, e2
i ,j−ei ,j}∪{∀i ,∀j1 6= j2, ei ,j1ei ,j2}∪{∀i ,

∑N
j=1 ei ,j−1}

• To keep internal structure, treat P and Q separately

• Focus on homogeneous parts: 〈S(h)〉 = 〈P(h)〉+ 〈Q(h)〉
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Highest degree from Hilbert Series

Polynomial ring R def= Fq[(ei ,j)i ,j ], R = ⊕d∈NRd hom. components
Hom. ideal I def= 〈f1, . . . , fm〉, Id

def= I ∩ Rd

Hilbert Series (HS) of I
Contains properties of I we need (in particular highest degree D)

→ Find Hilbert Series for 〈S(h)〉 then deduce D

Formal definition:
HR/I(z) def=

∑
d∈N

dim (Rd/Id )zd

0-dimensional ideal (HR/I(z) is a polynomial): H(I) def= min {δ ∈ N, Iδ = Rδ} (index)
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Structural part Q

Only depends on regular distribution. We analyze q = 2 (e.g. we can use (3))

Q(h) = {∀i ∈ {1..t}, ∀j ∈ {1..N}, e2
i ,j}︸ ︷︷ ︸

(1)

∪{∀i , ∀j1 6= j2, ei ,j1ei ,j2}︸ ︷︷ ︸
(2)

∪{∀i ,
∑N

j=1 ei ,j}︸ ︷︷ ︸
(3)

HS 1

We have dim(Rd/〈Q(h)〉d ) =
(t

d
)
(N − 1)d . Thus,

HR/〈Q(h)〉(z) = (1 + (N − 1)z)t

Proof (monomial counting).
Using (1) and (2), squarefree + at most one variable per e i block
Using (3), we get rid of one variable per e i block
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Random part P

We have P(h) = {eHT}. By assumption on H, “random” linear equations

• but we want “randomness” in R/〈Q(h)〉
• here, randomness means (semi)-regularity:

Semi-regularity over F2 [Bar04]

Let S def= F2[e]/〈e2〉, F = {f1, . . . , fm} homogeneous, 0-dim, index d〈F〉
System F is semi-regular over F2 if 〈F〉 6= S and if

∀i , deg (gi fi ) < d〈F〉, gi fi = 0 ∈ S/〈f1, . . . , fi−1〉⇒ gi = 0 ∈ S/〈f1, . . . , fi〉 (4)

In this paper, we adapt it to R/〈Q(h)〉 instead of R/〈e2〉

[Bar04] Bardet. “Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie”.
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Combining everything

Semi-regular HS are known ! (write exact sequences from (4))
Assumption

We assume semi-regularity of P(h) with our new definition

We have 〈S(h)〉 = 〈P(h)〉+ 〈Q(h)〉, we know HR/〈Q(h)〉. We want HR/〈S(h)〉
Under Assumption, we get

HR/〈S(h)〉(z) =
HR/〈Q(h)〉(z)
(1 + z)n−k

HS for S(h) (under Assumption + using HS 1)

HR/〈S(h)〉(z) = (1 + (N − 1)z)t

(1 + z)n−k
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Solving S (more concretely)



Cost of Gröbner Basis

• Dense linear algebra on Macaulay matrix MD → row ech. form
• Cost exponential in D, 2 ≤ ω < 3:

Tsolve(S) = O(#cols(MD)ω) = O
(( t

D
)ω(N − 1)ωD

)

Highest degree D from HS
Index of first < 0 coef. in HR/〈S(h)〉
+ “Degree fall assumption”: same D for S(h) and S
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Hybrid approach I

Conjectured D may be too high to be practical

Hybrid approach (folklore & [BFP10])
Fix f variables + solve specialized system Sspec,f

Hope: smaller D for Sspec,f

→ Guess f ≥ 0 zero positions in e (as Prange but f � k)

• Simplest way: u def= f /t per block, success proba
(

(N−1
u )

(N
u)

)t
= (1− u/N)t

[BFP10] Bettale, Faugère, and Perret. “Hybrid approach for solving multivariate systems over finite fields”.
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Hybrid approach II

Cost of solving Sspec,f ? Same assumptions as for S, same analysis:

HR/〈S(h)
spec,f 〉

(z) = (1 + (N − 1− u)z)t

(1 + z)n−k

Final complexity:

O
(

min
0≤u≤N−1

{
(1− u/N)−t × Tsolve(Sspec,u·t)

})

• Other ways to fix zeroes (inspired by ISDs ?). We analyze one more in the paper.
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From Dense to Sparse (under the carpet)

Use sparse linear algebra: ↘ Tsolve(.) ?

• Need XL-Wiedemann instead of Gröbner Basis
• Kernel of affine Macaulay matrix

XL at conjectured D may fail !
(need other parameter attached to affine systems: witness degree)
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Experimental Verification

We relied on Magma

• Check Assumption: compute HS for both S(h) and S(h)
spec,f (various f )

• Check Degree Fall assumption: steps of Magma’s F4 on affine system

• To do: show that XL can work
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Conclusion



Conjectured cost with Wiedemann

Parameters from Boyle et al. [Boy+19], updated analysis by Liu et al. [Liu+22]

Large field: no more {∀i ,
∑N

j=1 ei ,j = 1}, fields eqs of high degree (that’s ok)

n k t F2 [Liu+22] This work F2 F2128 [Liu+22] This work F2128

222 64770 4788 147 104 156 111
220 32771 2467 143 126 155 131
218 15336 1312 139 123 153 133
216 7391 667 135 141 151 151
214 3482 338 132 140 150 152
212 1589 172 131 136 155 152
210 652 106 176 146 194 180

[Liu+22] Liu et al. The Hardness of LPN over Any Integer Ring and Field for PCG Applications.
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More on the results

• Sometimes beats Gauss/ISDs for low rates (Primal LPN)

• Zone with “constant” deg. D → polynomial algorithm ?

Similar to Arora-Gê modeling on LWE [AG11]
(Polynomial for sufficiently many samples)

[AG11] Arora and Ge. “New Algorithms for Learning in Presence of Errors”. Automata, Languages and Programming.
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