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Abstract

A cyclic code is associated with another cyclic code to bound its minimum distance. The algebraic relation
between these two codes allows the formulation of syndromes and a key equation. We outline the decoding approach
for the case of errors and erasures and show how the Extended Euclidean Algorithm can be used for decoding.

I. NON-ZERO-LOCATOR CODE

We relate another cyclic code — the so-called non-zero-locator code £ — to a given cyclic code C. The obtained
bound d* on the minimum distance d of C can be expressed in terms of parameters of the associated non-zero-locator
code L.

Let us establish a connection between the codewords c(x) of a given cyclic code C and a sum of power series
expansions. Let ¢(z) be a codeword of a given g-ary cyclic code C(¢;n, k,d) and let )V denote the set of indexes
of non-zero coefficients of ¢(x) = Y_;cy, cia’. Let a € Fg- be an element of order n. Then we have the following
relation for all ¢(x) € C(q;n, k,d):

Oocoﬂ ) = ZZC&J%] ZZClamj—Zl_ciw (1)

j=0 j=0 i€y Jj=0i€y 1€y

Now, we can define the non-zero-locator code.

Definition 1 (Non-Zero-Locator Code). Let a g-ary cyclic code C(q;n, k,d) be given. Let Fys contain the nth roots
of unity. Let gcd(n,ng) =1 and let Fy, = Fy: be an extension field of F,. Let F, se contain the nyth roots of unity.
Let o € Fys be an element of order n and let BeF; o0 be an element of order ng

Then [,(Qg, ng, ke, dg) is a non-zero-locator code ofC if there exists a j1 > 2 and an integer e, such that ¥ a(z) € L
and ¥ c(x) € C:

Zc a7+e ﬁj 27 =0 mod 21, )
7=0
holds.

Theorem 1 (Minimum Distance). Let a g-ary cyclic code C(q;n,k,d) and its associated non-zero-locator code
L(qe; e, ke, dg) with ged(n,ng) = 1 and the integer | be given as in Definition 1. Then the minimum distance d
of C(q;n, k,d) satisfies the following inequality:

i>d [’ﬂ , 3)
dy
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II. ERROR/ERASURE DECODING APPROACH

Let the set £ = {ig,1,...,i.—1} with cardinality |€| = ¢ be the set of erroneous positions. The corresponding
error polynomial is denoted by e(x) = >, ¢ e;2". Let ”?” mark an erasure and let the set D = {jo, j1,...,Jjs5—1}
with cardinality |D| = § be the set of erased positions. Let the received polynomial 7(z) = Z?:_(]l 7t with

T e F,U{?}.

In tﬁe first step of the decoding process, the erasures in 7(x) are substituted by an arbitrary element from F,.
For simplicity, it is common to choose the zero-element. Thus, the corresponding erasure polynomial in Fy[z] is
denoted by d(z) = > ,cp d;x', where 7; +d; = ¢; +d; = 0, Vi € D. Let the modified received polynomial
r(z) € Fylz] be r(z) = Z?;()l rixt = c(z) + d(z) + e(x).

Definition 2 (Syndromes). Let a g-ary cyclic code C(q;n, k,d), its associated non-zero-locator code L(qg;ng, ke, dy)
with ged(n,ng) = 1, the integers i, e and the modified received polynomial r(x) € Fylx] of (2?) be given. Then
we define a syndrome polynomial S(x) € Fy[x] as follows:
S(z) = Zr(aj+e)a(6j)xj mod z+ 1. 4)
j=0

Q.
-

Since we know the positions of the erasures, we can compute an erasure-locator polynomial.

Definition 3 (Erasure-Locator Polynomial). Let the set D with |D| = & and a codeword a(z) = Y.z a;z" €
L(qe;ng, ke, dg) with weight dy be given. Here Z denotes the support of a(x). Then we define an erasure-locator

polynomial ¥ (z) € Fy-[z] as follows:
v(x) < ] (H (1 —miﬁj)). (5)
€D jEZ
_Note that W(z) has degree 6 - dy. As in Forney’s original approach we define a modified syndrome polynomial
S(x) and point out (in the following lemma), which coefficients of S(x) depend only on the error e;,, €;,,...,€;._,.

Lemma 1 (Modified Syndrome Polynomial). Let the erasure-locator polynomial W(x) of Definition 3 and the
syndrome polynomial S(x) of Definition 2 be given. Then the highest 1 — 1 — 0 - d; coefficients of

S(z) o U(z)-S(z) mod z+! (6)

depend only on the error polynomial e(x).
Similar to the erasure-locator polynomial, we define an error-locator polynomial as follows:
@) CTT (T (- 2ai7). (7)
i€ jez
of Qz) - ¥(z) + A(z) - A(x) and with (6) and (7), we obtain the following Key Equation:

degA(z) =¢e-dy
degQ(z) < (e+9)-dp—1.

Let Q(z)

mod z*~!, with

(®)

Lemma 2 (Solving the Key Equation). Assume § < d* — 1 erasures occurred. Let S(z) with deg S(z) < i — 2 as
in (6) be given. If

> ©))

e=|€| < VI—I—(SJ 7

then there exists a unique solution of (8) and we can use the EEA with the input polynomials v_1(x) = o1 and

ro(x) = S(z) to find it. Furthermore, we have the following stopping rule for the EEA: We stop, if the remainder

polynomial r;(x) in the ith step of the EEA fulfills:

p—14+6-d; p—14+6-d;
2 2 B

Then the EEA returns the error-locator polynomial A(x) as in (7) and the error/erasure-evaluation polynomial

Qx) = Qx) - ¥(x) + A(x) - A(z) as in (8).

degri_1(z) > and degri(z) < 1. (10)
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