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Abstract

A cyclic code is associated with another cyclic code to bound its minimum distance. The algebraic relation
between these two codes allows the formulation of syndromes and a key equation. We outline the decoding approach
for the case of errors and erasures and show how the Extended Euclidean Algorithm can be used for decoding.

I. NON-ZERO-LOCATOR CODE

We relate another cyclic code — the so-called non-zero-locator code L— to a given cyclic code C. The obtained
bound d∗ on the minimum distance d of C can be expressed in terms of parameters of the associated non-zero-locator
code L.

Let us establish a connection between the codewords c(x) of a given cyclic code C and a sum of power series
expansions. Let c(x) be a codeword of a given q-ary cyclic code C(q;n, k, d) and let Y denote the set of indexes
of non-zero coefficients of c(x) =

∑
i∈Y cix

i. Let α ∈ Fqs be an element of order n. Then we have the following
relation for all c(x) ∈ C(q;n, k, d):

∞∑
j=0

c(αj)xj =

∞∑
j=0

∑
i∈Y

ciα
jixj =

∞∑
j=0

∑
i∈Y

ci(α
ix)j =

∑
i∈Y

ci
1− xαi

. (1)

Now, we can define the non-zero-locator code.

Definition 1 (Non-Zero-Locator Code). Let a q-ary cyclic code C(q;n, k, d) be given. Let Fqs contain the nth roots
of unity. Let gcd(n, n`) = 1 and let Fq` = Fqt be an extension field of Fq. Let Fqs`` contain the n`th roots of unity.
Let α ∈ Fqs be an element of order n and let β ∈ Fqs`` be an element of order n`.

Then L(q`;n`, k`, d`) is a non-zero-locator code of C if there exists a µ ≥ 2 and an integer e, such that ∀ a(x) ∈ L
and ∀ c(x) ∈ C:

∞∑
j=0

c(αj+e)a(βj)xj ≡ 0 mod xµ−1, (2)

holds.

Theorem 1 (Minimum Distance). Let a q-ary cyclic code C(q;n, k, d) and its associated non-zero-locator code
L(q`;n`, k`, d`) with gcd(n, n`) = 1 and the integer µ be given as in Definition 1. Then the minimum distance d
of C(q;n, k, d) satisfies the following inequality:

d ≥ d∗ def
=

⌈
µ

d`

⌉
, (3)
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II. ERROR/ERASURE DECODING APPROACH

Let the set E = {i0, i1, . . . , iε−1} with cardinality |E| = ε be the set of erroneous positions. The corresponding
error polynomial is denoted by e(x) =

∑
i∈E eix

i. Let ”?” mark an erasure and let the set D = {j0, j1, . . . , jδ−1}
with cardinality |D| = δ be the set of erased positions. Let the received polynomial r̃(x) =

∑n−1
i=0 r̃ix

i with
r̃i ∈ Fq ∪ {?}.

In the first step of the decoding process, the erasures in r̃(x) are substituted by an arbitrary element from Fq.
For simplicity, it is common to choose the zero-element. Thus, the corresponding erasure polynomial in Fq[x] is
denoted by d(x) =

∑
i∈D dix

i, where r̃i + di = ci + di = 0, ∀i ∈ D. Let the modified received polynomial
r(x) ∈ Fq[x] be r(x) =

∑n−1
i=0 rix

i = c(x) + d(x) + e(x).

Definition 2 (Syndromes). Let a q-ary cyclic code C(q;n, k, d), its associated non-zero-locator code L(q`;n`, k`, d`)
with gcd(n, n`) = 1, the integers µ, e and the modified received polynomial r(x) ∈ Fq[x] of (??) be given. Then
we define a syndrome polynomial S(x) ∈ Fqr [x] as follows:

S(x)
def≡

∞∑
j=0

r(αj+e)a(βj)xj mod xµ−1. (4)

Since we know the positions of the erasures, we can compute an erasure-locator polynomial.

Definition 3 (Erasure-Locator Polynomial). Let the set D with |D| = δ and a codeword a(x) =
∑

i∈Z aix
i ∈

L(q`;n`, k`, d`) with weight d` be given. Here Z denotes the support of a(x). Then we define an erasure-locator
polynomial Ψ(x) ∈ Fqr [x] as follows:

Ψ(x)
def
=
∏
i∈D

(∏
j∈Z

(
1− xαiβj

))
. (5)

Note that Ψ(x) has degree δ · d`. As in Forney’s original approach we define a modified syndrome polynomial
S̃(x) and point out (in the following lemma), which coefficients of S̃(x) depend only on the error ei0 , ei1 , . . . , eiε−1

.

Lemma 1 (Modified Syndrome Polynomial). Let the erasure-locator polynomial Ψ(x) of Definition 3 and the
syndrome polynomial S(x) of Definition 2 be given. Then the highest µ− 1− δ · d` coefficients of

S̃(x)
def≡ Ψ(x) · S(x) mod xµ−1 (6)

depend only on the error polynomial e(x).

Similar to the erasure-locator polynomial, we define an error-locator polynomial as follows:

Λ(x)
def
=
∏
i∈E

(∏
j∈Z

(
1− xαiβj

))
. (7)

Let Ω̃(x)
def
= Ω(x) ·Ψ(x) +A(x) · Λ(x) and with (6) and (7), we obtain the following Key Equation:

S̃(x) ≡ Ω̃(x)

Λ(x)
mod xµ−1, with

deg Λ(x) = ε · d`
deg Ω̃(x) ≤ (ε+ δ) · d` − 1.

(8)

Lemma 2 (Solving the Key Equation). Assume δ < d∗ − 1 erasures occurred. Let S̃(x) with deg S̃(x) ≤ µ− 2 as
in (6) be given. If

ε = |E| ≤
⌊
d∗ − 1− δ

2

⌋
, (9)

then there exists a unique solution of (8) and we can use the EEA with the input polynomials r−1(x) = xµ−1 and
r0(x) = S̃(x) to find it. Furthermore, we have the following stopping rule for the EEA: We stop, if the remainder
polynomial ri(x) in the ith step of the EEA fulfills:

deg ri−1(x) ≥ µ− 1 + δ · d`
2

and deg ri(x) ≤ µ− 1 + δ · d`
2

− 1. (10)

Then the EEA returns the error-locator polynomial Λ(x) as in (7) and the error/erasure-evaluation polynomial
Ω̃(x) = Ω(x) ·Ψ(x) +A(x) · Λ(x) as in (8).
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