
How Easy is Code Equivalence over GF (q)?

Nicolas Sendrier Dimitris E. Simos∗

INRIA Paris-Rocquencourt INRIA Paris-Rocquencourt
Project-Team SECRET Project-Team SECRET

78153 Le Chesnay Cedex, France 78153 Le Chesnay Cedex, France
email: nicolas.sendrier@inria.fr email: dimitrios.simos@inria.fr

A linear [n, k] code of length n and dimension k over Fq = GF (q) is a k-dimensional vector
subspace of Fn

q , where GF (q) is the Galois field with q elements. We call such a code a q-ary
code. In this work, we are interested in a decisional problem regarding linear codes over Fq. In
particular, we aim towards an efficient algorithm for deciding the code equivalance over Fq. For
q-ary codes there are three different notions of equivalence: permutation, monomial (or linear)
and semi-linear, see [2].

Two q-ary codes C and C′ of length n are permutation-equivalent, if the codewords of C′
can be obtained from the codewords of C by applying a permutation σ on In = {1, . . . , n},
that is C′ = σ(C). When considering codes over Fq there are other maps also that preserve
the weight of the codewords. These maps include those which rescale coordinates and those
which are induced from field automorphisms. In particular, C and C′ are monomially-equivalent,
if there exists a linear isometry φ : Fn

q 7→ Fn
q mapping C to C′ (with respect to the Hamming

metric). This isometry φ can be expressed as an element of the group of monomial permutations.
When q = pr is not a prime, then the Frobenius automorphism τ : Fq 7→ Fq, x 7→ xp applied
on each coordinate of Fn

q preserves the Hamming distance, too. Therefore, the group of field
automorphisms is included to a more general notion of equivalence of linear codes. We call two
codes C and C′ to be semi-linearly equivalent if there is a field automorphism α ∈ Aut(Fq) and a
linear isometry ι : Fn

q 7→ Fn
q such that C′ = ι(α(C)). It is well-known that for n ≥ 3 the set of all

isometries of Fn
q mapping subspaces to subspaces is the group of semi-linear isometries, see [2].

Therefore, the notion of semi-linear isometry of linear codes is the most general which can be
expressed as a group action on the set of linear subspaces. In the binary case, all three notions of
equivalence are the same. If Fq is a prime field, monomial and semi-linear equivalence coincide,
since there are no non-trivial automorphisms, and when q is a prime power they are all different.

The computational difficulty of the code equivalence problem is of crucial importance in
the area of code-based cryptography. As an application, we mention the McEliece public-key
cryptosystem [3], where the public key is an instance of a permutation-equivalent code of a
binary Goppa code. The problem of permutation-equivalence is not NP-complete, however in
the worst case is reduced to the graph isomorphism [4] which is conjectured to be in NP\P. The
support-splitting algorithm [6] solves the code-equivalence problem exactly when the monomial
transformation is a permutation. The algorithm employs the concept of invariants and signatures.
Invariants are mappings such that for any pair of equivalent codes they take the same value. In
that sense, invariants are global properties of the code. On the other hand, signatures depends
on the code and one of its positions therefore are local properties. A good signature must be easy

∗This work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme. This
Programme is supported by the Marie Curie Co-funding of Regional, National and International Programmes
(COFUND) of the European Commission.

1



to compute and moreover be discriminant, that is the number of different values the signature
can take. Such a signature can be built from the weight enumerator of the hull of a code,
H(C) = C ∩ C⊥, for the binary and the ternary field because any invariant which is applied to
the hull still remains an invariant. The complexity of the support-splitting algorithm for these
cases depends exponentially on the dimension of the hull, which on average is a small constant
[5], therefore the algorithm is efficient in practice.

Estimating the hardness of the code equivalence problem of q-ary codes, or even better
developing an algorithm for deciding the latter problem, is of current interest. For example,
recently there have been proposed code-based cryptosystems which employ “wild” Goppa codes
over Fq, see [1]. We attempt a generalization of the support-splitting algorithm for Fq. In order
for this generalization to be successful we set the following goals:

• Reducing the monomial or semi-linear equivalence to permutation equivalence

• Identifying an invariant for linear codes over GF (q) with good properties

For the first task we introduce the closure of the code and the extension of its dual. For our
second goal it is natural to ask if the hulls of q-ary linear codes can be used as a mean to provide
invariants for the general case of code equivalence. Unfortunately, it turns out that the hulls of
equivalent codes do not remain equivalent over GF (q), q > 4. We provide a generalization of the
hull that remains invariant in the general case, however is far from being suitable for practical
applications at the monent. Finally, we provide some arguments that the code equivalence
problem over GF (q) is not too easy to be attacked with a polynomial-time algorithm.

References

[1] D. J. Bernstein, T. Lange and C. Peters, Wild McEliece, In Selected Areas in Cryptography
(SAC 2010), Lecture Notes in Computer Science, vol. 6544, pp. 143-158, Springer-Verlag,
2011.

[2] A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert and A. Wassermann, Error-
Correcting Linear Codes. Classication by Isometry and Applications, Springer, Berlin, 2006.

[3] J. McEliece, A public-key cryptosystem based on algebraic coding theory, DSN Progress
Rep. 42-44, JPL, Caltech, Pasadena, CA, pp. 114-116, Jan-Feb 1978.

[4] E. Petrank and R. M. Roth, Is code equivalence easy to decide?, IEEE Trans. on Inform.
Theory, 43 (1997), 1602-1604.

[5] N. Sendrier, On the dimension of the hull, SIAM J. Discete Math., 10 (1997), 282-293.

[6] N. Sendrier, Finding the permutation between equivalent linear codes: the support splitting
algorithm, IEEE Trans. Inform. Theory, 46 (2000), 1193-1203.

2


