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Code Equivalence of Linear Codes
Equivalence of Linear Codes over Fq

I Two linear codes C ,C ′ ⊆ Fn
q are called semi-linear equivalent if

there exist a permutation σ of In = {1, . . . , n}, an n-tuple
λ = (λi)i∈In of (F∗q)n and a field automorphism α ∈ Aut(Fq):

(xi)i∈In ∈ C ⇐⇒ (α(λσ−1(i)xσ−1(i)))i∈In ∈ C ′

I If q is prime, Aut(Fq) is trivial =⇒ C is linear equivalent to C ′

I If q = 2, λi = 1, i ∈ In =⇒ C is permutation equivalent to C ′

I Notation: C ∼ C ′

Code Equivalence Problem
I Input: Two [n, k] linear codes C and C ′ over Fq

I Decide: Are C ∼ C ′?
I Search: Given C ∼ C ′, find σ ∈ Sn, λ ∈ (F∗q)n, α ∈ Aut(Fq)

Dimitris E. Simos @ C2 ’12 3/19



Motivation for Code Equivalence
Relation to Error-Correcting Capability
Equivalent codes have the same error-correction properties (i.e. decoding)

Classification
Enumeration of equivalence classes of linear codes

Application in Code-based Cryptography
I The public key of the McEliece cryptosystem is a randomly permuted

binary Goppa code [McEliece, 1978]
I McEliece-like cryptosystems over Fq have recently emerged

I Wild Goppa codes [Bernstein, Lange and Peters, 2010]
I Identification schemes from error-correcting codes

I Zero-knowledge protocols [Girault, 1990]
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What is known for Code Equivalence?
Algorithms and Complexity

Complexity
PCE over F2 is difficult to decide in the worst case:

1 not NP-complete
2 at least as hard as Graph Isomorphism [Petrank and Roth, 1997]
3 Recent result for Fq: GI � PCE [Grochow, 2012]
4 Assuming an oracle for LCE or SLCE =⇒ PCE � LCE or SLCE
5 PCE over Fq resists quantum Fourier sampling; Reduction of PCE to the

Hidden Subgroup Problem [Dinh, Moore and Russell, 2011]

Recent Algorithms
I Adaptation of Hypergraph Isomorphism algorithms for PCE over Fq

[Babai, Codenotti and Grochow, 2011]
I Computation of canonical forms of linear codes for LCE over Fq, for q

small [Feulner, 2009, 2011]
I Support splitting algorithm for PCE over Fq [Sendrier, 2000]
I No efficient algorithm for LCE or SLCE is known
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Invariants and Signatures
for a given Linear Code

Invariants of a Code
I A mapping V is an invariant if C ∼ C ′ ⇒ V(C) = V(C ′)
I Any invariant is a global property of a code

Weight Enumerators are Invariants
I C ∼ C ′ ⇒WC (X ) =WC ′(X ) or WC (X ) 6=WC ′(X )⇒ C 6∼ C ′
I WC (X ) =

∑n
i=0 AiX i and Ai =| {c ∈ C | w(c) = i} |

Signature of a Code
I A mapping S is a signature if S(σ(C), σ(i)) = S(C , i)
I Property of the code and one of its positions (local property)

Building a Signature from an Invariant
1 If V is an invariant, then SV : (C , i) 7→ V(C{i}) is a signature
2 where C{i} is obtained by puncturing the code C on i
3 If C ′ = σ(C)⇒ V(C{i}) = V(C ′{σ(i)}), ∀ i ∈ In, i.e. V =W
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The Support Splitting Algorithm (I)
Design of the Algorithm

Discriminant Signatures
1 A signature S is discriminant for C if ∃ i 6= j ,S(C , i) 6= S(C , j)
2 S is fully discriminant for C if ∀ i 6= j ,S(C , i) 6= S(C , j)

The Procedure [Sendrier, 2000]
I From given signature S and code C , we wish to build a sequence

S0 = S,S1, . . . ,Sr of signatures of increasing “discriminancy” such
that Sr is fully discriminant for C

I Achieved by succesive refinements of the signature S

Properties of SSA
1 SSA(C) returns a labeled partition P(S,C) of In
2 Assuming the existence of a fully discriminant signature, SSA(C)

recovers the desired permutation σ of C ′ = σ(C)
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Fully Discriminant Signatures
Statement
If C ′ = σ(C) and S is fully discriminant for C then ∀ i ∈ In ∃ unique j ∈ In such
that S(C , i) = S(C ′, j) and σ(i) = j
An Example of a Fully Discriminant Signature

C = {1110, 0111, 1010} and C ′ = {0011, 1011, 1101}
C{1} = {110, 111, 010} → WC{1}(X ) = X + X 2 + X 3

C{2} = {110, 011} → WC{2}(X ) = 2X 2

C{3} = {110, 011, 100} → WC{3}(X ) = X + 2X 2

C{4} = {111, 011, 101} → WC{4}(X ) = 2X 2 + X 3
C ′{1} = {011, 101} → WC ′{1}

(X ) = 2X 2

C ′{2} = {011, 111, 101} → WC ′{2}
(X ) = 2X 2 + X 3

C ′{3} = {001, 101, 111} → WC ′{3}
(X ) = X + X 2 + X 3

C ′{4} = {001, 101, 110} → WC ′{4}
(X ) = X + 2X 2

C ′ = σ(C) where σ(1) = 3, σ(2) = 1, σ(3) = 4 and σ(4) = 2
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How to Refine a Signature
An Example of a Refined Signature

C = {01101, 01011, 01110, 10101, 11110}
C ′ = {10101, 00111, 10011, 11100, 11011}

WC{1} (X) = X 2 + 3X 3 = WC′
{2}

(X) ⇒ σ(1) = 2

WC{4} (X) = 2X 2 + 3X 3 = WC′
{4}

(X) ⇒ σ(4) = 4

WC{5} (X) = 3X 2 + X 3 + X 4 = WC′
{3}

(X) ⇒ σ(5) = 3

WC{2} (X) = 3X 2 + 2X 3 = WC′
{1}

(X)

WC{3} (X) = 3X 2 + 2X 3 = WC′
{5}

(X)

Refinement: Positions {2, 3} in C and {1, 5} in C ′ cannot be discriminated, but{ WC{1,2} (X) = 3X 2 = WC′
{2,5}

(X) ⇒ σ({1, 2}) = {2, 5}

WC{1,3} (X) = X + 2X 2 + X 3 = WC′
{2,1}

(X) ⇒ σ({1, 3}) = {2, 1}

Thus σ(1) = 2, σ(2) = 5, σ(3) = 1, σ(4) = 4 and σ(5) = 3

Fundamental Properties of SSA
1 If C ′ = σ(C) then P ′(S,C ′) = σ(P(S,C))
2 The output of SSA(C) where C =< G > is independent of G
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The Support Splitting Algorithm (II)
Practical Issues

A Good Signature
The mapping (C , i) 7→ WH(Ci )(X ) where H(C) = C ∩ C⊥ is a signature
which is, for random codes,

I easy to compute because of the small dimension [Sendrier, 1997]
I discriminant, i.e. WH(Ci )(X ) and WH(Cj )(X ) are “often” different

Algorithmic Cost
Let C be a binary code of length n, and let h = dim(H(C)):

I First step: O(n3) +O(n2h)

I Each refinement: O(hn2) +O(n2h)

I Number of refinements: ≈ log n
Total (heuristic) complexity: O(n3 + 2hn2 log n)

I When h −→ 0 =⇒ SSA runs in polynomial time
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The Closure of a Linear Code (I)
Approach for the Generalization of SSA
I Reduce LCE or SLCE to PCE
I Recall that SSA solves PCE in O(n3) (for “several” instances)

Closure of a Code
Let p be a primitive element of Fq. The closure C of a code C ⊆ Fn

q is a
code of length (q − 1)n over the same field where:

(x1, . . . , xn) ∈ C =⇒ (px1, . . . , pq−1x1, . . . , pxn, . . . , pq−1xn) ∈ C

Fundamental Properties of the Closure

I If C ∼ C ′ w.r.t. LCE =⇒ C ∼ C ′ w.r.t. PCE
I ∃ a block-wise permutation σ ofM / S(q−1)n such that C ′ = σ(C)

I If C is an [n, k, d ] code =⇒ C is an [(q − 1)n, k, (q − 1)d ] code
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The Closure of a Linear Code (II)
The Closure is a Weakly Self-Dual Code
∀ x , y ∈ C the Euclidean inner product is

x · y =

(q−1∑
j=1

p2j

)
︸ ︷︷ ︸

=0 over Fq, q≥5

(∑
i

xiyi

)
= 0

I Clearly dim(H(C)) = dim(C) and SSA runs in O(2dim(H(C)))

I The closure reduces LCE to the hard instances of SSA for PCE
I Exceptions are for q = 3 and q = 4 with the Hermitian inner product

Building Efficient Invariants from the Closure
I For any invariant V the mapping C 7−→ V(H(C)) is an invariant
I The dimension of the hull over Fq is on average a small constant
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The Extension of the Dual Code
Extension of the Dual
Let β be a primitive element of Fq and C⊥ the dual code of C ⊆ Fn

q.
Define Ĉi = {βix | β ∈ F∗q, x ∈ C⊥}. The extension of the dual code is a
code of length (q− 1)n and dimension (q− 1)(n− k) where dim(C) = k
and is given by the direct sum

Ĉ =

q−1⊕
i=1

Ĉi = Ĉ1
⊕

. . .
⊕

Ĉq−1

Fundamental Properties of the Extension

I If C⊥ ∼ C ′⊥ w.r.t. LCE =⇒ Ĉ ∼ Ĉ ′ w.r.t. PCE
I H(C) = C ∩ Ĉ
I If dim(H(C)) = h =⇒ dim(C ∩ Ĉ) = h
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Towards a Generalization of SSA
A Good Signature for F3 and F4

I H(C) = H(C) = C ∩ Ĉ (valid only for these fields)
I S(C , i) =WH(Ci )

(X )

An Efficient Algorithm for Solving LCE
• Input: C ,C ′,S

1 Compute C ,C ′ and Ĉ , Ĉ ′
2 P(S,C)←− SSA(C) and P ′(S,C ′)←− SSA(C ′)
3 If P ′(S,C ′) = σ(P(S,C)) return σ; else C � C ′ w.r.t. LCE
4 C ′ = σ(C) and a Gaussian elimination (GE) on the permuted

generator matrices of the closures will reveal the scaling coefficients

I For SLCE we only have to consider an additional GE
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Generalized Hulls of Linear Codes
What about Fq, q ≥ 5?
I If C ∼ C ′ w.r.t. LCE or SLCE =⇒ H(C) ∼ H(C ′) w.r.t. LCE or

SLCE is not true
I The hull is not an invariant for LCE or SLCE over Fq, q ≥ 5

The Generalized Hull
Let C ⊆ Fn

q and an n-tuple a = (ai)i∈In of (F∗q)n. Define the dual code
C⊥a = {x • c = 0 | x ∈ Fn

q, c ∈ C} w.r.t. to the inner product

x • y =
n∑

i=1
aixiyi

I Hull w.r.t. a: Ha(C) = C ∩ C⊥a
I If we consider all a ∈ (F∗q)n we obtain (q − 1)n different hulls
I The generalized hull is an invariant for LCE
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Research Problems

Related to the Closure
I If C ′ = σ(C) for some σ ofM / S(q−1)n what is the structure of the

subgroupM?
I Other reductions of LCE or SLCE to PCE?

Conjecture
I LCE or SLCE seems to be hard over Fq, q ≥ 5
I Can we build zero-knowledge protocols based on the hardness of

LCE or SLCE?
Related to the Generalized Hull
I Can we find a practical application of Ha(C)?
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Summary

Highlights
1 We defined the closure of a linear code and the extension of its dual
2 We presented a generalization of the support splitting algorithm for

solving the Linear Code Equivalence problem for F3 and F4
3 We conjectured that the (Semi)-Linear Code Equivalence

problem over Fq, q ≥ 5 is hard on the average case

Future Work
Solve (some) of the research problems..!
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Questions - Comments

Thanks for your Attention!

Merci Beaucoup!
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