P g

: nformatics 7 mathemarics

How Easy is Code Equivalence over GF(q)?

Dimitris E. Simos
(joint work with Nicolas Sendrier)

Project-Team SECRET
INRIA Paris-Rocquencourt

October 10, 2012
JOURNEES CODAGE ET CRYPTOGRAPHIE (C2)
Dinard, France

Dimitris E. Simos @ C2 '12 1/19



Outline of the Talk Csia

@ Code Equivalence Problem
@ Motivation
@ Previous Work

Dimitris E. Simos @ C2 '12 2/19



Outline of the Talk

@ Code Equivalence Problem
@ Motivation
@ Previous Work

© Support Splitting Algorithm
@ Mechanics
@ Generalization

Dimitris E. Simos @ C2 '12

2/19



Outline of the Talk

@ Code Equivalence Problem
@ Motivation
@ Previous Work

© Support Splitting Algorithm
@ Mechanics
@ Generalization

© Research Problems

Dimitris E. Simos @ C2 '12

2/19



Code Equivalence of Linear Codes V7

‘ Equivalence of Linear Codes over F ‘

» Two linear codes C, C' C IFy are called semi-linear equivalent if
there exist a permutation ¢ of I, = {1,...,n}, an n-tuple
A = (Mi)iei, of (F)" and a field automorphism o € Aut(Fy):

(X,'),'e/" € C <« (Oz()\071(;)X071(,'))),'€/n eC

> If g is prime, Aut(Fg) is trivial = C is linear equivalent to C’
» Ifg=2, )\ =1,i€el,= Cis permutation equivalent to C’
» Notation: C ~ C’

CoDE EQUIVALENCE Problem ‘

> Input: Two [n, k] linear codes C and C’ over F,
> Decide: Are C ~ C"?
» Search: Given C ~ C', find 0 € S, A € (F7)", a € Aut(F,)

Dimitris E. Simos @ C2 '12 3/19



Motivation for Code Equivalence V% 77
‘ Relation to Error-Correcting Capability‘

Equivalent codes have the same error-correction properties (i.e. decoding)

Classification

Enumeration of equivalence classes of linear codes

‘Application in Code-based Cryptography‘

» The public key of the McEliece cryptosystem is a randomly permuted
binary Goppa code [McEliece, 1978]
> McEliece-like cryptosystems over IF; have recently emerged
» Wild Goppa codes [Bernstein, Lange and Peters, 2010]
» lIdentification schemes from error-correcting codes
» Zero-knowledge protocols [Girault, 1990]

Dimitris E. Simos @ C2 '12 4/19



What is known for Code Equivalence? i

Algorithms and Complexity
Complexity
PCE over [ is difficult to decide in the worst case:

@ not NP-complete

@ at least as hard as GRAPH ISOMORPHISM [Petrank and Roth, 1997]

@ Recent result for Fy: GI < PCE [Grochow, 2012]

@ Assuming an oracle for LCE or SLCE = PCE < LCE or SLCE

© PCE over Fy resists quantum Fourier sampling; Reduction of PCE to the
HIDDEN SUBGROUP PROBLEM [Dinh, Moore and Russell, 2011]

’ Recent Algorithms ‘

» Adaptation of Hypergraph Isomorphism algorithms for PCE over F,
[Babai, Codenotti and Grochow, 2011]

» Computation of canonical forms of linear codes for LCE over Fg, for g
small [Feulner, 2009, 2011]

> Support splitting algorithm for PCE over g [Sendrier, 2000]

> No efficient algorithm for LCE or SLCE is known

Dimitris E. Simos @ C2 '12 5/19



Invariants and Signatures Cvia—
for a given Linear Code
’ Invariants of a Code‘
» A mapping V is an invariant if C ~ C' = V(C) = V(C')
» Any invariant is a global property of a code

’Weight Enumerators are Invariants‘

» C~(C' = Wc(X) = WC/(X) or Wc(X) 7£ WCI(X) = C 76 c’
> We(X) =" g AX and A =| {c € C | w(c)=i}|

’Signature of a Code‘

» A mapping S is a signature if S(o(C),o(i)) = S(C, i)
» Property of the code and one of its positions (local property)

’ Building a Signature from an Invariant‘

@ If Vis an invariant, then Sy, : (C, i) = V(Cy;y) is a signature
@ where Cy;y is obtained by puncturing the code C on i
Q IfC'=0(C)=V(Cp) = V(CEU(,.)}), Vil ie V=W

Dimitris E. Simos @ C2 '12 6/19



The Support Splitting Algorithm (1) 7/ -

Design of the Algorithm

‘ Discriminant Signatures‘
@ A signature S is discriminant for C if 3i # j, S(C,i) # S(C,})
@ S is fully discriminant for C if Vi # j, S(C,i) # S(C,J)

‘The Procedure [Sendrier, 2000] ‘

» From given signature S and code C, we wish to build a sequence
So=S5,51,...,5, of signatures of increasing “discriminancy” such

that S, is fully discriminant for C
> Achieved by succesive refinements of the signature S

‘ Properties of SS.A‘

@ SSA(C) returns a labeled partition P(S, C) of I,
@ Assuming the existence of a fully discriminant signature, SSA(C)
recovers the desired permutation ¢ of C' = o(C)

Dimitris E. Simos @ C2 '12 7/19



Fully Discriminant Signatures

Statement

h i

If C" =0(C) and S is fully discriminant for C then Vi € [, 3 unique j € I, such

that S(C,i) = S(C',j) and o(i) = j

’An Example of a Fully Discriminant Signature‘

C = {1110,0111, 1010} and C’' = {0011,1011,1101}

Cp1y = {110,111,010}
Cpay = {110,011}

Cisy = {110,011,100}
Ciay = {111,011,101}
Cfyy = {011,101}

Clyy = {011,111,101}
Cl3y = {001,101,111}
Cl4y = {001,101,110}

A A

We, (X) =X+ X2+ X3
Wep, (X) = 2X2
Wep, (X) = X +2X2
WCM ) =2X2 4 X3

(X
() =2x2
(
(

ol

X)=2X2+ X3
X)=X+X2+X3
=X+2X2

2

C' =0(C) where 6(1) =3, 0(2) =1, 0(3) =4 and 0(4) =2

Dimitris E. Simos @ C2 '12

8/19



How to Refine a Signature V2577, 3
’An Example of a Refined Signature‘

C = {01101,01011,01110,10101,11110}
¢’ = {10101,00111,10011,11100, 11011}
W, (X)) = X2 +3x° = WC€2}(X) =o(1)=2
Wey (X)) = 2X% +3X3 = W%} X) =o4)=4
We, (X)) = X2+ X3+ xP = W%} (X) =o0(5)=3
Wep, (X)) = 3X2 +2X° = wch}(x)
W, X) = 3x242x° = W X
sy (X) CES}( )

Refinement: Positions {2,3} in C and {1,5} in C’ cannot be discriminated, but

(X) = o({1,2})={2,5}
X) =o({1,3)=1{21}

— 2
{wcm}(x) = 3x sy

Wep 5, (X)) = X+ 2X2 4+ X3 =
Thus o(1) =2, 0(2) =5,0(3) =1, 0(4) =4 and o(5) =3
’ Fundamental Properties of SSA‘

@ If C' = o(C) then P(S, C') = o(P(S, C))
@ The output of SSA(C) where C =< G > is independent of G

Dimitris E. Simos @ C2 '12 9/19



The Support Splitting Algorithm (1) £z

Practical Issues
‘A Good Signature‘

The mapping (C, i) = Wyy(c)(X) where H(C) = C N C* is a signature
which is, for random codes,

> easy to compute because of the small dimension [Sendrier, 1997]
» discriminant, i.e. Wyy(c,)(X) and Wyy(c,)(X) are “often” different

Algorithmic Cost ‘
Let C be a binary code of length n, and let h = dim(#(C)):
> First step: O(n®) + O(n2")
» Each refinement: O(hn?) 4+ O(n2")
» Number of refinements: ~ logn
Total (heuristic) complexity: O(n® + 27n%log n)
» When h — 0 = SSA runs in polynomial time

Dimitris E. Simos @ C2 '12 10/19



The Closure of a Linear Code (I) Csia

‘Approach for the Generalization of SS.A‘

» Reduce LCE or SLCE to PCE
» Recall that SSA solves PCE in O(n?) (for “several” instances)

\ Closure of a Code‘

Let p be a primitive element of F,. The closure C of acode C C Fgisa
code of length (g — 1)n over the same field where:

(X1, %) € C= (px1,...,p9 X1, ..., PXn, ..., P9 1x,) € C

‘ Fundamental Properties of the Closure‘

» If C~ C'wrt. LCE = C~ C' w.rt. PCE
> 3 a block-wise permutation o of M < S4_1, such that C’ = o(C)
» If Cis an [n, k,d] code = C is an [(g — 1)n, k, (q — 1)d] code

Dimitris E. Simos @ C2 '12 11/19



The Closure of a Linear Code (l1) Cozia
‘The Closure is a Weakly Self-Dual Code‘
V X,y € C the Euclidean inner product is

Xy = C;lpﬁ) (Zx,-y;>:o

—_——
=0 over Fq, q>5

» Clearly dim(#(C)) = dim(C) and SS.A runs in O(24m(*(C))
» The closure reduces LCE to the hard instances of SSA for PCE

» Exceptions are for ¢ = 3 and g = 4 with the Hermitian inner product

Building Efficient Invariants from the Closure‘

» For any invariant V the mapping C —— V(H(C)) is an invariant

> The dimension of the hull over F, is on average a small constant

Dimitris E. Simos @ C2 '12 12/19



The Extension of the Dual Code L5

‘ Extension of the Dual ‘
Let 3 be a primitive element of Fg and C* the dual code of C C F7.
Define C; = {f/x | B € F;,x € Ct}. The extension of the dual code is a

code of length (g —1)n and dimension (g — 1)(n — k) where dim(C) = k
and is given by the direct sum

1

c=@e-a@. Dl

i=1

Q

‘ Fundamental Properties of the Extension ‘

» If Ct ~ "t wrt. LCE = C ~ C' w.rt. PCE
» H(C)=CnC
> If dim(H(C)) = h = dim(CNC) =h

Dimitris E. Simos @ C2 '12 13/19



Towards a Generalization of SSA V2% 77
‘A Good Signature for F3 and Ty ‘

» H(C) = H(C) = Cn C (valid only for these fields)
> S(C0) = Wy (X)

e lnput: C,C",S
@ Compute C, C’ and Z‘,?
Q@ P(S,C) «— SSA(C) and P'(S, C") +— SSA(C)
Q If P'(S,C") = o(P(S, C)) return o; else C = C' w.rt. LCE

@ C’ = 0(C) and a Gaussian elimination (GE) on the permuted
generator matrices of the closures will reveal the scaling coefficients

» For SLCE we only have to consider an additional GE

Dimitris E. Simos @ C2 '12 14/19



Generalized Hulls of Linear Codes Cozia
’What about Fy, g > 5?\
> If C~ C’' wrt. LCE or SLCE = H(C) ~ H(C’) w.rt. LCE or

SLCE is not true
» The hull is not an invariant for LCE or SLCE over Fy, g > 5

’The Generalized Hull ‘
Let C C Fy and an n-tuple a = (a;)iey, of (F;)". Define the dual code
C-={xec=0|x€elF] ce C}wrt. to the inner product

n
xXey = E aiXiYyi
i=1

» Hullwrt. a: H,(C)=CNCH
> If we consider all a € (F;)" we obtain (g — 1)" different hulls
» The generalized hull is an invariant for LCE

Dimitris E. Simos @ C2 '12 15/19



Research Problems L5

‘ Related to the CIosure‘

» If ' = o(C) for some o of M qS4_1), what is the structure of the
subgroup M?
» Other reductions of LCE or SLCE to PCE?

» LCE or SLCE seems to be hard over Fy, ¢ > 5

» Can we build zero-knowledge protocols based on the hardness of
LCE or SLCE?

Related to the Generalized Hull

» Can we find a practical application of H,(C)?

Dimitris E. Simos @ C2 '12 16/19



Summary Crzia—

Highlights

@ We defined the closure of a linear code and the extension of its dual

@ We presented a generalization of the support splitting algorithm for
solving the LINEAR CODE EQUIVALENCE problem for F3 and F,

@ We conjectured that the (SEMI)-LINEAR CODE EQUIVALENCE
problem over [F,, g > 5 is hard on the average case

Dimitris E. Simos @ C2 '12 17/19



Summary &zm ,,,,,,,, P

Highlights

@ We defined the closure of a linear code and the extension of its dual

@ We presented a generalization of the support splitting algorithm for
solving the LINEAR CODE EQUIVALENCE problem for F3 and F,

@ We conjectured that the (SEMI)-LINEAR CODE EQUIVALENCE
problem over [F,, g > 5 is hard on the average case

Solve (some) of the research problems..!

Dimitris E. Simos @ C2 '12 17/19



References lovsii

\ Laszl6é Babai, Paolo Codenotti, Joshua Grochow and Youming Qiao,
“Code equivalence and group isomorphism,” In Proc. 22nd Ann. Symp. on
Discrete Algorithms (SODA 2011), pages 1395-1408. ACM-SIAM, 2011.

¥ D. J. Bernstein, T. Lange and C. Peters, “Wild McEliece,” In SAC 2010,
Lecture Notes in Computer Science, vol. 6544, pp. 143-158.
Springer-Verlag, 2011.

@ E. Petrank and R. M. Roth, “Is code equivalence easy to decide?,” |IEEE
Trans. Inf. Theory, vol. 43, pp. 1602-1604, 1997.

@ N. Sendrier, “On the dimension of the hull,” SIAM J. Discete Math., vol.
10, pp. 282-293, 1997.

@ N. Sendrier, “Finding the permutation between equivalent codes: the
support splitting algorithm,” IEEE Trans. Inf. Theory, vol. 46, pp.
1193-1203, 2000.

u]
8]
I
ul
it

Dimitris E. Simos @ C2 '12 18/19



Questions - Comments

Thanks for your Attention!

<o <k

Dimitris E. Simos @ C2 '12

DAC
19/19



	Code Equivalence Problem
	Motivation
	Previous Work

	Support Splitting Algorithm
	Mechanics
	Generalization

	Research Problems
	Conclusion

