

How Easy is Code Equivalence over GF(q)?

Dimitris E. Simos (joint work with Nicolas Sendrier)

Project-Team SECRET INRIA Paris-Rocquencourt

October 10, 2012 Journées Codage et Cryptographie (C2) Dinard, France

Outline of the Talk

- Code Equivalence Problem
 - Motivation
 - Previous Work

Outline of the Talk

- Code Equivalence Problem
 - Motivation
 - Previous Work
- Support Splitting Algorithm
 - Mechanics
 - Generalization

Outline of the Talk

- Code Equivalence Problem
 - Motivation
 - Previous Work
- Support Splitting Algorithm
 - Mechanics
 - Generalization
- Research Problems

Code Equivalence of Linear Codes

Equivalence of Linear Codes over \mathbb{F}_q

► Two linear codes $C, C' \subseteq \mathbb{F}_q^n$ are called semi-linear equivalent if there exist a permutation σ of $I_n = \{1, \ldots, n\}$, an n-tuple $\lambda = (\lambda_i)_{i \in I_n}$ of $(\mathbb{F}_q^*)^n$ and a field automorphism $\alpha \in \operatorname{Aut}(\mathbb{F}_q)$:

$$(x_i)_{i \in I_n} \in C \iff (\alpha(\lambda_{\sigma^{-1}(i)} X_{\sigma^{-1}(i)}))_{i \in I_n} \in C'$$

- ▶ If q is prime, $Aut(\mathbb{F}_q)$ is trivial \Longrightarrow C is linear equivalent to C'
- ▶ If q = 2, $\lambda_i = 1$, $i \in I_n \Longrightarrow C$ is permutation equivalent to C'
- ▶ Notation: $C \sim C'$

CODE EQUIVALENCE Problem

- ▶ Input: Two [n, k] linear codes C and C' over \mathbb{F}_q
- ▶ Decide: Are $C \sim C'$?
- ▶ Search: Given $C \sim C'$, find $\sigma \in S_n, \lambda \in (\mathbb{F}_q^*)^n, \alpha \in \operatorname{Aut}(\mathbb{F}_q)$

Motivation for Code Equivalence

Relation to Error-Correcting Capability

Equivalent codes have the same error-correction properties (i.e. decoding)

Classification

Enumeration of equivalence classes of linear codes

Application in Code-based Cryptography

- ► The public key of the McEliece cryptosystem is a randomly permuted binary Goppa code [McEliece, 1978]
- lacktriangle McEliece-like cryptosystems over \mathbb{F}_q have recently emerged
 - ▶ Wild Goppa codes [Bernstein, Lange and Peters, 2010]
- ▶ Identification schemes from error-correcting codes
 - ► Zero-knowledge protocols [Girault, 1990]

What is known for Code Equivalence? (initia-

Algorithms and Complexity

Complexity

 $\overline{\text{PCE}}$ over \mathbb{F}_2 is difficult to decide in the worst case:

- not NP-complete
- 2 at least as hard as GRAPH ISOMORPHISM [Petrank and Roth, 1997]
- **3** Recent result for \mathbb{F}_a : GI \prec PCE [Grochow, 2012]
- \blacksquare Assuming an oracle for LCE or SLCE \Longrightarrow PCE \prec LCE or SLCE
- \bullet PCE over \mathbb{F}_a resists quantum Fourier sampling; Reduction of PCE to the HIDDEN SUBGROUP PROBLEM [Dinh, Moore and Russell, 2011]

Recent Algorithms

- \triangleright Adaptation of Hypergraph Isomorphism algorithms for PCE over \mathbb{F}_a [Babai, Codenotti and Grochow, 2011]
- \triangleright Computation of canonical forms of linear codes for LCE over \mathbb{F}_a , for qsmall [Feulner, 2009, 2011]
- ▶ Support splitting algorithm for PCE over \mathbb{F}_a [Sendrier, 2000]
- ▶ No efficient algorithm for LCE or SLCE is known

Invariants and Signatures

for a given Linear Code

Invariants of a Code

- ▶ A mapping V is an invariant if $C \sim C' \Rightarrow V(C) = V(C')$
- ► Any invariant is a global property of a code

Weight Enumerators are Invariants

- $\blacktriangleright \ \ C \sim C' \Rightarrow \mathcal{W}_C(X) = \mathcal{W}_{C'}(X) \text{ or } \mathcal{W}_C(X) \neq \mathcal{W}_{C'}(X) \Rightarrow C \not\sim C'$
- $\blacktriangleright \mathcal{W}_C(X) = \sum_{i=0}^n A_i X^i$ and $A_i = |\{c \in C \mid w(c) = i\}|$

Signature of a Code

- ▶ A mapping S is a signature if $S(\sigma(C), \sigma(i)) = S(C, i)$
- Property of the code and one of its positions (local property)

Building a Signature from an Invariant

- **1** If \mathcal{V} is an invariant, then $S_{\mathcal{V}}:(C,i)\mapsto \mathcal{V}(C_{\{i\}})$ is a signature
- ② where $C_{\{i\}}$ is obtained by puncturing the code C on i

The Support Splitting Algorithm (I)

Design of the Algorithm

Discriminant Signatures

- **1** A signature S is discriminant for C if $\exists i \neq j, S(C, i) \neq S(C, j)$
- **2** S is fully discriminant for C if $\forall i \neq j, S(C, i) \neq S(C, j)$

The Procedure [Sendrier, 2000]

- From given signature S and code C, we wish to build a sequence $S_0 = S, S_1, \ldots, S_r$ of signatures of increasing "discriminancy" such that S_r is fully discriminant for C
- ► Achieved by succesive refinements of the signature *S*

Properties of \mathcal{SSA}

- SSA(C) returns a labeled partition P(S,C) of I_n
- ② Assuming the existence of a fully discriminant signature, SSA(C) recovers the desired permutation σ of $C' = \sigma(C)$

Fully Discriminant Signatures

Statement

If $\overline{C' = \sigma(C)}$ and S is fully discriminant for C then $\forall i \in I_n \exists$ unique $j \in I_n$ such that S(C,i) = S(C',j) and $\sigma(i) = j$

An Example of a Fully Discriminant Signature

$$C = \{1110,0111,1010\} \text{ and } C' = \{0011,1011,1101\}$$

$$\begin{cases} C_{\{1\}} = \{110,111,010\} & \rightarrow & \mathcal{W}_{C_{\{1\}}}(X) = X + X^2 + X^3 \\ C_{\{2\}} = \{110,011\} & \rightarrow & \mathcal{W}_{C_{\{2\}}}(X) = 2X^2 \\ C_{\{3\}} = \{110,011,100\} & \rightarrow & \mathcal{W}_{C_{\{3\}}}(X) = X + 2X^2 \\ C_{\{4\}} = \{111,011,101\} & \rightarrow & \mathcal{W}_{C_{\{4\}}}(X) = 2X^2 + X^3 \end{cases}$$

$$\begin{cases} C'_{\{1\}} = \{011,101\} & \rightarrow & \mathcal{W}_{C'_{\{4\}}}(X) = 2X^2 \\ C'_{\{2\}} = \{011,111,101\} & \rightarrow & \mathcal{W}_{C'_{\{2\}}}(X) = 2X^2 + X^3 \\ C'_{\{3\}} = \{001,101,111\} & \rightarrow & \mathcal{W}_{C'_{\{3\}}}(X) = X + X^2 + X^3 \\ C'_{\{4\}} = \{001,101,110\} & \rightarrow & \mathcal{W}_{C'_{\{4\}}}(X) = X + 2X^2 \end{cases}$$

4 □ ▷ ◀률 ▷ ◀臺 ▷ ▼ ○ ○

 $C' = \sigma(C)$ where $\sigma(1) = 3$, $\sigma(2) = 1$, $\sigma(3) = 4$ and $\sigma(4) = 2$

How to Refine a Signature

An Example of a Refined Signature

Refinement: Positions $\{2,3\}$ in C and $\{1,5\}$ in C' cannot be discriminated, but

$$\left\{ \begin{array}{lcl} \mathcal{W}_{\mathcal{C}_{\{1,2\}}}(X) & = & 3X^2 & = & \mathcal{W}_{\mathcal{C}'_{\{2,5\}}}(X) & \Rightarrow \sigma(\{1,2\}) = \{2,5\} \\ \mathcal{W}_{\mathcal{C}_{\{1,3\}}}(X) & = & X + 2X^2 + X^3 & = & \mathcal{W}_{\mathcal{C}'_{\{2,1\}}}(X) & \Rightarrow \sigma(\{1,3\}) = \{2,1\} \end{array} \right.$$

Thus $\sigma(1) = 2$, $\sigma(2) = 5$, $\sigma(3) = 1$, $\sigma(4) = 4$ and $\sigma(5) = 3$

Fundamental Properties of \mathcal{SSA}

- If $C' = \sigma(C)$ then $\mathcal{P}'(S, C') = \sigma(\mathcal{P}(S, C))$
- 2 The **output** of SSA(C) where $C = \langle G \rangle$ is independent of G

The Support Splitting Algorithm (II)

Practical Issues

A Good Signature

The mapping $(C, i) \mapsto \mathcal{W}_{\mathcal{H}(C_i)}(X)$ where $\mathcal{H}(C) = C \cap C^{\perp}$ is a signature which is, for random codes,

- ▶ easy to compute because of the small dimension [Sendrier, 1997]
- ▶ discriminant, i.e. $\mathcal{W}_{\mathcal{H}(C_i)}(X)$ and $\mathcal{W}_{\mathcal{H}(C_i)}(X)$ are "often" different

Algorithmic Cost

Let C be a binary code of length n, and let $h = \dim(\mathcal{H}(C))$:

- ▶ First step: $\mathcal{O}(n^3) + \mathcal{O}(n2^h)$
- ▶ Each refinement: $\mathcal{O}(hn^2) + \mathcal{O}(n2^h)$
- ▶ Number of refinements: $\approx \log n$

Total (heuristic) complexity: $\mathcal{O}(n^3 + 2^h n^2 \log n)$

▶ When $h \longrightarrow 0 \Longrightarrow SSA$ runs in polynomial time

Dimitris E. Simos @ C2 '12 10/19

The Closure of a Linear Code (I)

Approach for the Generalization of \mathcal{SSA}

- ▶ Reduce LCE or SLCE to PCE
- ▶ Recall that SSA solves PCE in $O(n^3)$ (for "several" instances)

Closure of a Code

Let p be a primitive element of \mathbb{F}_q . The closure \overline{C} of a code $C \subseteq \mathbb{F}_q^n$ is a code of length (q-1)n over the same field where:

$$(x_1,\ldots,x_n)\in C\Longrightarrow (px_1,\ldots,p^{q-1}x_1,\ldots,px_n,\ldots,p^{q-1}x_n)\in \overline{C}$$

Fundamental Properties of the Closure

- ▶ If $C \sim C'$ w.r.t. LCE $\Longrightarrow \overline{C} \sim \overline{C'}$ w.r.t. PCE
- ▶ \exists a block-wise permutation σ of $\mathcal{M} \triangleleft \mathcal{S}_{(q-1)n}$ such that $\overline{C'} = \sigma(\overline{C})$
- ▶ If C is an [n, k, d] code $\Longrightarrow \overline{C}$ is an [(q-1)n, k, (q-1)d] code

Dimitris E. Simos @ C2 '12 11/19

The Closure of a Linear Code (II)

The Closure is a Weakly Self-Dual Code

 $\forall \ \overline{x}, \overline{y} \in \overline{C}$ the Euclidean inner product is

$$\overline{x} \cdot \overline{y} = \underbrace{\left(\sum_{j=1}^{q-1} p^{2j}\right)}_{=0 \text{ over } \mathbb{F}_q, \ q \ge 5} \left(\sum_i x_i y_i\right) = 0$$

- ▶ Clearly $\dim(\mathcal{H}(\overline{C})) = \dim(\overline{C})$ and SSA runs in $\mathcal{O}(2^{\dim(\mathcal{H}(\overline{C}))})$
- \blacktriangleright The closure reduces LCE to the hard instances of \mathcal{SSA} for PCE
- \blacktriangleright Exceptions are for q=3 and q=4 with the Hermitian inner product

Building Efficient Invariants from the Closure

- ▶ For any invariant \mathcal{V} the mapping $C \longmapsto \mathcal{V}(\mathcal{H}(\overline{C}))$ is an invariant
- ▶ The dimension of the hull over \mathbb{F}_q is on average a small constant

Dimitris E. Simos @ C2 '12 12/19

The Extension of the Dual Code

Extension of the Dual

and is given by the direct sum

Let β be a primitive element of \mathbb{F}_q and C^{\perp} the dual code of $C \subseteq \mathbb{F}_q^n$. Define $\widehat{C}_i = \{\beta^i x \mid \beta \in \mathbb{F}_a^*, x \in C^{\perp}\}$. The extension of the dual code is a code of length (q-1)n and dimension (q-1)(n-k) where $\dim(C)=k$

 $\widehat{C} = \bigoplus^{q-1} \widehat{C}_i = \widehat{C}_1 \bigoplus \ldots \bigoplus \widehat{C}_{q-1}$

$$C = \bigoplus_{i=1} C_i = C_1 \bigoplus \ldots \bigoplus C_q$$

Fundamental Properties of the Extension

- ▶ If $C^{\perp} \sim C'^{\perp}$ w.r.t. LCE $\Longrightarrow \widehat{C} \sim \widehat{C'}$ w.r.t. PCE
- $ightharpoonup \overline{\mathcal{H}(C)} = \overline{C} \cap \widehat{C}$
- ▶ If dim($\mathcal{H}(C)$) = $h \Longrightarrow \dim(\overline{C} \cap \widehat{C}) = h$

Towards a Generalization of SSA

A Good Signature for \mathbb{F}_3 and \mathbb{F}_4

- ▶ $\overline{\mathcal{H}(C)} = \mathcal{H}(\overline{C}) = \overline{C} \cap \widehat{C}$ (valid only for these fields)

An Efficient Algorithm for Solving LCE

- **Input**: *C*, *C'*, *S*
 - **1** Compute \overline{C} , $\overline{C'}$ and \widehat{C} , $\widehat{C'}$
 - $② \ \mathcal{P}(S,\overline{C}) \longleftarrow \mathcal{SSA}(\overline{C}) \ \text{and} \ \mathcal{P}'(S,\overline{C'}) \longleftarrow \mathcal{SSA}(\overline{C'})$
 - **③** If $\mathcal{P}'(S, \overline{C'}) = \sigma(\mathcal{P}(S, \overline{C}))$ return σ ; else $C \nsim C'$ w.r.t. LCE
 - **1** $\overline{C'} = \sigma(\overline{C})$ and a Gaussian elimination (GE) on the permuted generator matrices of the closures will reveal the scaling coefficients

▶ For SLCE we only have to consider an additional GE

Dimitris E. Simos @ C2 '12 14/19

Generalized Hulls of Linear Codes

What about \mathbb{F}_q , $q \geq 5$?

- ▶ If $C \sim C'$ w.r.t. LCE or SLCE $\Longrightarrow \mathcal{H}(C) \sim \mathcal{H}(C')$ w.r.t. LCE or SLCE is **not** true
- ▶ The hull is not an invariant for LCE or SLCE over \mathbb{F}_q , $q \geq 5$

The Generalized Hull

Let $C \subseteq \mathbb{F}_q^n$ and an *n*-tuple $a = (a_i)_{i \in I_n}$ of $(\mathbb{F}_q^*)^n$. Define the dual code $C_a^{\perp} = \{x \bullet c = 0 \mid x \in \mathbb{F}_q^n, c \in C\}$ w.r.t. to the inner product

$$x \bullet y = \sum_{i=1}^{n} a_i x_i y_i$$

- ▶ Hull w.r.t. a: $\mathcal{H}_a(C) = C \cap C_a^{\perp}$
- ▶ If we consider all $a \in (\mathbb{F}_a^*)^n$ we obtain $(q-1)^n$ different hulls
- ► The generalized hull is an invariant for LCE

4 ロ ト 4 御 ト 4 蓮 ト 4 蓮 ト 3 重 9 9 9 0

Research Problems

Related to the Closure

- ▶ If $\overline{C'} = \sigma(\overline{C})$ for some σ of $\mathcal{M} \triangleleft \mathcal{S}_{(q-1)n}$ what is the structure of the subgroup \mathcal{M} ?
- ▶ Other reductions of LCE or SLCE to PCE?

Conjecture

- ▶ LCE or SLCE seems to be hard over \mathbb{F}_q , $q \ge 5$
- Can we build zero-knowledge protocols based on the hardness of LCE or SLCE?

Related to the Generalized Hull

▶ Can we find a practical application of $\mathcal{H}_a(C)$?

4□ ト 4個 ト 4 種 ト 4 種 ト 種 9 4 ℃

Summary

Highlights

- We defined the closure of a linear code and the extension of its dual
- $\begin{tabular}{ll} \textbf{@} We presented a generalization of the support splitting algorithm for \\ solving the Linear Code Equivalence problem for \mathbb{F}_3 and \mathbb{F}_4 \\ \end{tabular}$
- **3** We conjectured that the (SEMI)-LINEAR CODE EQUIVALENCE problem over \mathbb{F}_q , $q \geq 5$ is hard on the average case

Summary

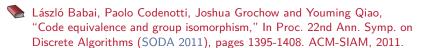
Highlights

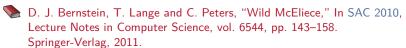
- We defined the closure of a linear code and the extension of its dual
- ② We presented a generalization of the support splitting algorithm for solving the Linear Code Equivalence problem for \mathbb{F}_3 and \mathbb{F}_4
- We conjectured that the (SEMI)-LINEAR CODE EQUIVALENCE problem over \mathbb{F}_q , $q \geq 5$ is hard on the average case

Future Work

Solve (some) of the research problems..!

References





- E. Petrank and R. M. Roth, "Is code equivalence easy to decide?," IEEE Trans. Inf. Theory, vol. 43, pp. 1602–1604, 1997.
- N. Sendrier, "On the dimension of the hull," SIAM J. Discete Math., vol. 10, pp. 282–293, 1997.
 - N. Sendrier, "Finding the permutation between equivalent codes: the support splitting algorithm," IEEE Trans. Inf. Theory, vol. 46, pp. 1193-1203, 2000.

4 D F 4 P F F F F F F Dimitris E. Simos @ C2 '12

Questions - Comments

Thanks for your Attention!

Merci Beaucoup!