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Codes over finite quotient of polynomial rings:
motivations and notations

Let be p(x) ∈ F2[x] with deg(p(x)) = m

A = F2[x]/p(x) with euclidien division.

E = A` where ` in N∗

Definition
A code C of length ` over a ring A, is a submodule of E,
that is stable by addition and multiplication by element of
A.
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Special Cases

when p(x) = xm − 1 C is a quasi-cyclic code.

When p(x) irreducible we have A ∼= F2m which gives
codes over F2m .

When p(x) = p1(x)p2(x) and p1(x) and p2(x) are
irreducible, is the case that we consider to study in
this talk.
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Generator Matrix

Let C be a binary code of length ` on A, a matrix M of size
k × ` is called a generator matrix of the code C, if the
application defined as

φ : Ak −→ A`

x 7−→ φ(x) = x.M

satisfy : φ(Ak) = C.
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Example
Let

M =

(
x3 + x+ 1 x(x3 + x+ 1) (x2 + 1)(x3 + x+ 1)

0 x4 + x+ 1 x

)

be a matrix generator of a code C of length 3 over
F2[x]/p(x), with p(x) = (x3 + x+ 1)(x4 + x+ 1).
we have Kerφ = {(y(x4 + x+ 1), 0) with y in A } and
|C| = 8
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F2 generator matrix

Proposition
Let M = (g1(x), g2(x), . . . , gl(x)) be a generator matrix of a
single line, the F2-generator matrix is

M ′ =


g1(x) g2(x) . . . gl(x)
xg1(x) xg2(x) . . . xgl(x)
x2g1(x) x2g2(x) . . . x2gl(x)

...
...

...
...

xm−dg1(x) xm−dg2(x) . . . xm−dgl(x)


where d = deg(pgcd(p(x), g1(x), g2(x), . . . , gl(x)))
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Remark
If M is a generator matrix of multiple rows, the
F2-generator matrix is the concatenation of the
F2-generator matrix of each line.
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Example

Let M=
(
x3 + x+ 1 x(x3 + x+ 1) (x2 + 1)(x3 + x+ 1)

0 x4 + x+ 1 x

)
be a matrix generator of a code C of length 3 over
F2[x]/p(x), with p(x) = (x3 + x+ 1)(x4 + x+ 1), the
F2-generator matrix of C is :

M =



x3 + x+ 1 x(x3 + x+ 1) (x2 + 1)(x3 + x+ 1)
x4 + x3 + x x5 + x3 + x2 x6 + x5 + x4 + x
x5 + x4 + x2 x6 + x5 + x3 x6 + x3 + 1
x6 + x5 + x3 x6 + x5 + x4 + x3 + x2 + 1 x5 + x4 + x3 + x2 + x+ 1

0 x4 + x+ 1 x
0 x5 + x2 + x x2

0 x6 + x3 + x2 x3

0 x5 + x4 + x2 + 1 x4

0 x6 + x5 + x3 + x x5

0 x6 + x5 + x4 + x3 + 1 x6

0 x6 + x4 + x3 + x2 + x+ 1 x5 + x3 + x2 + 1
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Hermite Normal Form

Definition
An k × ` matrix M is in Hermite normal form if :

1 M is echeloned.
2 all the first non zero polynomials in each line are

divisors of p(x).
3 if gij is the first non zero polynomial in the line ”i”

and column "j" we have :
deg(gij > deg(g(i−t)j) where 1 ≤ t < i.

Kristine Lally, Patrick Fitzpatrick, "Algebraic structure of
quasicyclic codes" Original Research Article Discrete
Applied Mathematics, Volume 111, Issues 1–2, 15 July
2001, Pages 157-175
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Reduction algorithm
1 Vector reduction.
2 Gaussian elimination.
3 Echlonned matrix.
4 Hermite normal form.

Example

M =

(
x4 + x2 + x x4 + x x6 + x3 + x2 + x

x4 + x3 + x2 + 1 x6 + x2 x6 + x5 + x2 + x

)

The Hermite normal form of M is :

(
x3 + x+ 1 x3 + 1 x5 + x4 + x+ 1

0 x4 + x+ 1 x+ 1

)
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Duality in E

Definition
Scalar product in E:
Let u, v ∈ E such that u = (u1(x), u2(x), . . . , u`(x)) and
v = (v1(x), v2(x), . . . , v`(x)).

We denote by 〈u(x), v(x)〉 =
∑`

i=1 ui(x)vi(x) the application
which associate to two vectors in E an element of A: the
scalar product of u and v in the ring E.

Proposition
Let C be a linear code of length ` over A.

C⊥ = {v ∈ E/ < u, v >= 0 mod p(x) ∀u ∈ C}
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binary image of codes over A

Notations
ϕ : A −→ Fm

2 :
u(x) =

∑m−1
i=0 aix

i −→ (a0, a1, . . . , am−1).
ω : A` −→ Fm`

2 :
(u1(x), . . . , u`(x)) −→ (ϕ(u1), . . . , ϕ(u`)).
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Multiplication matrix by x

Multiplication matrix by x:

Mp =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

p0 p1 . . . . . . pm−1


where ϕ(p(x)) = (p0, . . . , pm−1).
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Multiplication matrix by an element in A
Let f(x) ∈ A the multiplication matrix by f in A is :

Mf(x) =
∑m−1

i=0 fiM
i
p

Where fi is a vector of size `, and that has zero everywhere,
except at position ”i” where it has the coefficient of index
”i” of the polynomial f(x).

fi.Mp = (f0, . . . , fm−1).


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
p0 p1 . . . . . . pm−1



=


fm1p0

f0 + fm−1p1
...

fm−2 + fm−1pm−1


For a(x) ∈ A :ϕ(a(x)f(x)) = ϕ(a(x))Mf(x)
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generator matrix of a binary image code

Let Ga a matrix k × ` over A, we denote by ψ the
application that associate to each matrix of A his binary
image over F2.

ψ(Ga) = Gb =

Mf11 Mf12 . . . Mf1`
...

...
...

...
Mfk1 Mfk2 . . . Mfk`


Definition
Let CA be a code over A of length `, then CB = ω(CA),
where CB is a binary image of CA over Fn

2 where n = m`.
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Theorem
If MA is a generator matrix of a code C over A, Then
ψ(MA) =MB is a matrix whose lines generates CB.
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Calculating of the dual

1 Codes over A
Let C be a code of length ` on A and M be a
generator matrix of C, then
C⊥ = {h ∈ A/G.ht = 0}
⇐⇒ { i ∈ {1, . . . , k}〈gi, h〉 = 0} .
where gi is a row vector of M .

2 Binary image∑`
j=1M

t
gi,j(x)

ϕ(hj(x))
t = 0, for all i ∈ {1, . . . , k}, with

the gi,j(x) are the coefficients of the vector gi.

Codes over finite quotient of polynomial rings



Codes over finite quotient of polynomial rings Perspective

Theorem
Let C be a code of length ` on A and M be a generator
matrix of C.
Set:

H =

M
t
g1,1

. . . M t
g1,`

...
...

...
M t

gk,1
. . . M t

gk,`


H is a matrix which generates ω(C⊥)⊥ (H is not
necessarily full rank).
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Example

Let C be a binary linear code of length ` = 7 on F[x]2/p(x)
where p(x) = (x3+x+1)(x4+x+1) = x7+x5+x3+x2+1
and its canonical generator matrix M of size 4× 7:

M =(
1 0 0 0 x6 + x5 + x4 + x x6 + x5 + x4 + x2 + 1 x4 + x3 + 1

0 1 0 0 x6 + x5 + x4 + x3 + x2 + x + 1 x6 + x5 + x3 + 1 x6 + x5 + x4 + x2 + 1

0 0 1 0 x3 + x + 1 x4 + x3 + x + 1 x6 + x5 + 1

0 0 0 1 x6 x5 + x4 + x2 + x + 1 x6 + x5 + x + 1

)
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The binary image ω(C) parameters are [49, 28, 6], and its
dual binary image ω(C)⊥ has parameters [49, 21, 8] .
The dual of C over A is:

M⊥ =(
1 0 0 x4 + x3 + 1 x4 + x3 + x2 + x x5 + x4 + x3 + x x6 + x5 + x

0 1 0 x4 + x3 + x + 1 x6 + x4 x6 + x5 + x4 + 1 x6 + x4 + x3 + 1

0 0 1 x6 + x4 + x3 + x2 + x x5 + x3 + 1 x4 + x3 + x2 + x 0

)
The binary image ω(C⊥) to its dual A is of parameters
[49, 21, 9].
Then we can see that ω(C)⊥ 6= ω(C⊥) .
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Perspective

Search for primitive nth roots in the group of invertible
A∗ in A to Build Reed-Solomon codes.
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Thank you for your attention
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