Codes over finite quotient of polynomial rings

Nora EL AMRANI

Limoges University, XLIM Laboratory and Mohammed V-Agdal University Rabat

Plan

1 Codes over finite quotient of polynomial rings

- motivations and notations
- Special Cases
- Generator Matrix
- Hermit Normal Form
- Duality
 - Scalar product
- Binary image of codes
 - Matrix code generator of a binary image
 - Calculating of the dual

2 Perspective

Codes over finite quotient of polynomial rings: motivations and notations

• Let be $p(x) \in \mathbb{F}_2[x]$ with deg(p(x)) = m

Codes over finite quotient of polynomial rings

Perspective

Codes over finite quotient of polynomial rings: motivations and notations

- Let be $p(x) \in \mathbb{F}_2[x]$ with deg(p(x)) = m
- $A = \mathbb{F}_2[x]/p(x)$ with euclidien division.

Codes over finite quotient of polynomial rings: motivations and notations

- Let be $p(x) \in \mathbb{F}_2[x]$ with deg(p(x)) = m
- $A = \mathbb{F}_2[x]/p(x)$ with euclidien division.
- $E = A^{\ell}$ where ℓ in \mathbb{N}^*

Definition

A code C of length ℓ over a ring A, is a submodule of E, that is stable by addition and multiplication by element of A.

Perspective

æ

990

Special Cases

• when
$$p(x) = x^m - 1 C$$
 is a quasi-cyclic code.

<ロト <回ト < 回ト < 回 Codes over finite quotient of polynomial rings

MQ (P

Special Cases

- when $p(x) = x^m 1 C$ is a quasi-cyclic code.
- When p(x) irreducible we have $A \cong \mathbb{F}_{2^m}$ which gives codes over \mathbb{F}_{2^m} .

Special Cases

- when $p(x) = x^m 1 C$ is a quasi-cyclic code.
- When p(x) irreducible we have $A \cong \mathbb{F}_{2^m}$ which gives codes over \mathbb{F}_{2^m} .
- When $p(x) = p_1(x)p_2(x)$ and $p_1(x)$ and $p_2(x)$ are irreducible, is the case that we consider to study in this talk.

Generator Matrix

Let C be a binary code of length ℓ on A, a matrix M of size $k \times \ell$ is called a generator matrix of the code C, if the application defined as

$$\phi : A^k \longrightarrow A^\ell$$
$$x \longmapsto \phi(x) = x.M$$

satisfy : $\phi(A^k) = C$.

Example

Let

$$M = \begin{pmatrix} x^3 + x + 1 & x(x^3 + x + 1) & (x^2 + 1)(x^3 + x + 1) \\ 0 & x^4 + x + 1 & x \end{pmatrix}$$

be a matrix generator of a code C of length 3 over $\mathbb{F}_2[x]/p(x)$, with $p(x) = (x^3 + x + 1)(x^4 + x + 1)$. we have $Ker\phi = \{(y(x^4 + x + 1), 0) \text{ with } y \text{ in } A\}$ and |C| = 8

\mathbb{F}_2 generator matrix

Proposition

Let $M = (g_1(x), g_2(x), \dots, g_l(x))$ be a generator matrix of a single line, the \mathbb{F}_2 -generator matrix is

$$M' = \begin{pmatrix} g_1(x) & g_2(x) & \dots & g_l(x) \\ xg_1(x) & xg_2(x) & \dots & xg_l(x) \\ x^2g_1(x) & x^2g_2(x) & \dots & x^2g_l(x) \\ \vdots & \vdots & \vdots & \vdots \\ x^{m-d}g_1(x) & x^{m-d}g_2(x) & \dots & x^{m-d}g_l(x) \end{pmatrix}$$

where $d = deg(pgcd(p(x), g_1(x), g_2(x), \dots, g_l(x)))$

Remark

If M is a generator matrix of multiple rows, the \mathbb{F}_2 -generator matrix is the concatenation of the \mathbb{F}_2 -generator matrix of each line.

Codes over finite quotient of polynomial rings

nace

Example

$$Let \ M = \begin{pmatrix} x^3 + x + 1 & x(x^3 + x + 1) & (x^2 + 1)(x^3 + x + 1) \\ 0 & x^4 + x + 1 & x \end{pmatrix}$$

be a matrix generator of a code C of length 3 over
$$\mathbb{F}_2[x]/p(x), \ with \ p(x) = (x^3 + x + 1)(x^4 + x + 1), \ the$$

$$\mathbb{F}_2\text{-generator matrix of C is :}$$

$$M = \begin{pmatrix} x^3 + x + 1 & x(x^3 + x + 1) & (x^2 + 1)(x^3 + x + 1) \\ x^4 + x^3 + x & x^5 + x^3 + x^2 & x^6 + x^5 + x^4 + x \\ x^5 + x^4 + x^2 & x^6 + x^5 + x^3 & x^6 + x^3 + 1 \\ x^6 + x^5 + x^3 & x^6 + x^5 + x^4 + x^3 + x^2 + 1 & x^5 + x^4 + x^3 + x^2 + x + 1 \\ 0 & x^4 + x + 1 & x \\ 0 & x^5 + x^2 + x & x^2 \\ 0 & x^6 + x^3 + x^2 & x^3 \\ 0 & x^5 + x^4 + x^2 + 1 & x^4 \\ 0 & x^6 + x^5 + x^3 + x & x^5 \\ 0 & x^6 + x^5 + x^4 + x^3 + 1 & x^6 \\ 0 & x^6 + x^4 + x^3 + x^2 + x + 1 & x^5 + x^3 + x^2 + 1 \end{pmatrix}$$

Hermite Normal Form

Definition

An $k \times \ell$ matrix M is in Hermite normal form if :

- \bullet M is echeloned.
- all the first non zero polynomials in each line are divisors of p(x).

S if g_{ij} is the first non zero polynomial in the line "i" and column "j" we have : $deg(g_{ij} > deg(g_{(i-t)j}))$ where 1 ≤ t < i.</p>

Kristine Lally, Patrick Fitzpatrick, "Algebraic structure of quasicyclic codes" Original Research Article Discrete Applied Mathematics, Volume 111, Issues 1–2, 15 July 2001, Pages 157-175

Reduction algorithm

- Vector reduction.
- **2** Gaussian elimination.
- ³ Echlonned matrix.
- Hermite normal form.

Example

$$M = \begin{pmatrix} x^4 + x^2 + x & x^4 + x & x^6 + x^3 + x^2 + x \\ x^4 + x^3 + x^2 + 1 & x^6 + x^2 & x^6 + x^5 + x^2 + x \end{pmatrix}$$

The Hermite normal form of \boldsymbol{M} is :

$$\begin{pmatrix} x^3 + x + 1 & x^3 + 1 & x^5 + x^4 + x + 1 \\ 0 & x^4 + x + 1 & x + 1 \end{pmatrix}$$

Codes over finite quotient of polynomial rings

Perspective

Duality in E

Definition

Scalar product in E: Let $u, v \in E$ such that $u = (u_1(x), u_2(x), \dots, u_\ell(x))$ and $v = (v_1(x), v_2(x), \dots, v_\ell(x)).$

We denote by $\langle u(x), v(x) \rangle = \sum_{i=1}^{\ell} u_i(x)v_i(x)$ the application which associate to two vectors in E an element of A: the scalar product of u and v in the ring E.

Proposition

Let C be a linear code of length ℓ over A.

$$C^{\perp} = \{ v \in E / < u, v \ge 0 \mod p(x) \ \forall u \in C \}$$

 Codes over finite quotient of polynomial rings

nar

binary image of codes <u>over A</u>

Notations

$$\begin{aligned} \varphi : A &\longrightarrow \mathbb{F}_2^m : \\ u(x) &= \sum_{i=0}^{m-1} a_i x^i \longrightarrow (a_0, a_1, \dots, a_{m-1}). \\ \omega : A^\ell &\longrightarrow \mathbb{F}_2^{m\ell} : \\ (u_1(x), \dots, u_\ell(x)) \longrightarrow (\varphi(u_1), \dots, \varphi(u_\ell)). \end{aligned}$$

Codes over finite quotient of polynomial rings

→ Ξ →

< 同 ▶

Multiplication matrix by x

Multiplication matrix by *x*:

$$M_p = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_0 & p_1 & \dots & \dots & p_{m-1} \end{pmatrix}$$

where $\varphi(p(x)) = (p_0, ..., p_{m-1}).$

Multiplication matrix by an element in A

Let $f(x) \in A$ the multiplication matrix by f in A is :

$$M_{f(x)} = \sum_{i=0}^{m-1} f_i M_p^i$$

Where f_i is a vector of size ℓ , and that has zero everywhere, except at position "*i*" where it has the coefficient of index "*i*" of the polynomial f(x).

$$f_{i}.M_{p} = (f_{0}, \dots, f_{m-1}). \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ p_{0} & p_{1} & \dots & \dots & p_{m-1} \end{pmatrix}$$
$$= \begin{pmatrix} f_{m_{1}}p_{0} \\ f_{0} + f_{m-1}p_{1} \\ \vdots \\ f_{m-2} + f_{m-1}p_{m-1} \end{pmatrix}$$

For $a(x) \in A$: $\varphi(a(x)f(x)) = \varphi(a(x))M_{f(x)}$

generator matrix of a binary image code

Let G_a a matrix $k \times \ell$ over A, we denote by ψ the application that associate to each matrix of A his binary image over \mathbb{F}_2 .

$$\psi(G_a) = G_b = \begin{pmatrix} M_{f_{11}} & M_{f_{12}} & \dots & M_{f_{1\ell}} \\ \vdots & \vdots & \vdots & \vdots \\ M_{f_{k1}} & M_{f_{k2}} & \dots & M_{f_{k\ell}} \end{pmatrix}$$

Definition

Let C_A be a code over A of length ℓ , then $C_B = \omega(C_A)$, where C_B is a binary image of C_A over \mathbb{F}_2^n where $n = m\ell$.

DQ P

Theorem

If M_A is a generator matrix of a code C over A, Then $\psi(M_A) = M_B$ is a matrix whose lines generates C_B .

> ▲ 同 ▶ ▲ 国 ▶ ▲ Codes over finite quotient of polynomial rings

Calculating of the dual

Codes over A

Let C be a code of length ℓ on A and M be a generator matrix of C, then $C^{\perp} = \{h \in A/G.h^t = 0\}$ $\iff \{i \in \{1, \dots, k\} \langle g_i, h \rangle = 0\}$. where g_i is a row vector of M.

2 Binary image $\sum_{j=1}^{\ell} M_{g_{i,j}(x)}^t \varphi(h_j(x))^t = 0$, for all $i \in \{1, \ldots, k\}$, with the $g_{i,j}(x)$ are the coefficients of the vector g_i .

Theorem

Let C be a code of length ℓ on A and M be a generator matrix of C. Set:

$$H = \begin{pmatrix} M_{g_{1,1}}^t & \dots & M_{g_{1,\ell}}^t \\ \vdots & \vdots & \vdots \\ M_{g_{k,1}}^t & \dots & M_{g_{k,\ell}}^t \end{pmatrix}$$

H is a matrix which generates $\omega(C^{\perp})^{\perp}$ (H is not necessarily full rank).

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Let C be a binary linear code of length $\ell = 7$ on $\mathbb{F}[x]_2/p(x)$ where $p(x) = (x^3 + x + 1)(x^4 + x + 1) = x^7 + x^5 + x^3 + x^2 + 1$ and its canonical generator matrix M of size 4×7 :

$$\begin{split} M = & M = \\ \begin{pmatrix} 1 & 0 & 0 & 0 & x^6 + x^5 + x^4 + x & x^6 + x^5 + x^4 + x^2 + 1 & x^4 + x^3 + 1 \\ 0 & 1 & 0 & 0 & x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 & x^6 + x^5 + x^3 + 1 & x^6 + x^5 + x^4 + x^2 + 1 \\ 0 & 0 & 1 & 0 & x^3 + x + 1 & x^4 + x^3 + x + 1 & x^6 + x^5 + 1 \\ 0 & 0 & 0 & 1 & x^6 & x^5 + x^4 + x^2 + x + 1 & x^6 + x^5 + x + 1 \end{pmatrix} \end{split}$$

The binary image $\omega(C)$ parameters are [49, 28, 6], and its dual binary image $\omega(C)^{\perp}$ has parameters [49, 21, 8]. The dual of C over A is:

$$M^{\perp} =$$

 $\begin{pmatrix} 1 & 0 & 0 & x^4 + x^3 + 1 & x^4 + x^3 + x^2 + x & x^5 + x^4 + x^3 + x & x^6 + x^5 + x \\ 0 & 1 & 0 & x^4 + x^3 + x + 1 & x^6 + x^4 & x^6 + x^5 + x^4 + 1 & x^6 + x^4 + x^3 + 1 \\ 0 & 0 & 1 & x^6 + x^4 + x^3 + x^2 + x & x^5 + x^3 + 1 & x^4 + x^3 + x^2 + x & 0 \end{pmatrix}$

The binary image $\omega(C^{\perp})$ to its dual A is of parameters [49, 21, 9]. Then we can see that $\omega(C)^{\perp} \neq \omega(C^{\perp})$.

・ 同 ト・ イ ヨ ト・・

nar

Perspective

• Search for primitive n^{th} roots in the group of invertible A^* in A to Build Reed-Solomon codes.

Codes over finite quotient of polynomial rings

→ Ξ →

э

990

Thank you for your attention

イロト イボト イヨト イヨト Codes over finite quotient of polynomial rings