Reconstruction of Constellation Labeling with Convolutional Coded Data

Marion Bellard Nicolas Sendrier

INRIA-Rocquencourt, SECRET Project-Team

October 2012

- Communication System
- 2 Convolutional codes
- 3 Reconstruction of Constellation Labeling
 - Method
 - Classes
 - Convolutional code reconstruction
 - Complexity
 - Further work

Source

Convolutional

Modulation

$$x = x_1 \dots x_k \xrightarrow{\text{coding}} y = y_1 \dots y_n \longrightarrow z_t = (z_1 \dots z_a)_t \xrightarrow{\text{Labeling}} (A, \phi)_t$$

Communication system

$$x' = x'_1 \dots x'_k \frac{1}{\text{Decoding}} y' = y'_1 \dots y'_n \frac{1}{\text{Decoding}} z'_t = (z'_1 \dots z'_a)_t \frac{1}{\text{Decoding}} z'_t =$$

Receiver

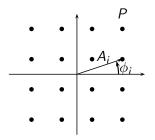
Demodulation

 $\varphi'(t)$

Labeling and Modulation

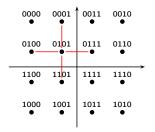
Labeling : $P \in \mathcal{C} \rightarrow f(P) \in \mathbb{F}_2^a$

Constellation: Representation of the labeling in the plane



0000	0001	0011 •	P) = 0010 •
0100	0101 •	0111	0110 •
1100	1101 •	1111	1110
1000	1001 •	1011 •	1010 •

Gray labeling



f is a Gray labeling if for all P_1 and $P_2 \in \mathcal{C}$ such as $d(P_1, P_2) = 1$, $d_{Hamming}(f(P_1), f(P_2)) = 1$

- Communication System
- 2 Convolutional codes
- 3 Reconstruction of Constellation Labeling
 - Method
 - Classes
 - Convolutional code reconstruction
 - Complexity
 - Further work

Convolutional codes

n			
G ₀	G_1	G ₂	
	G ₀	G_1	G ₂
		G ₀	G_1
	G ₀	G ₀ G ₁	G_0 G_1 G_2 \cdots G_0 G_1

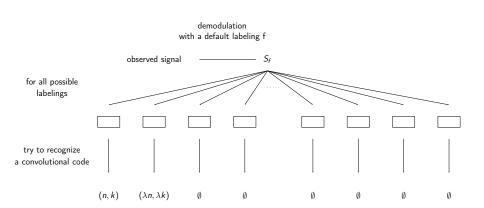
k : number of inputsn : number of outputs

The output $(y_1 \dots y_n)_t$ depends on $(x_1 \dots x_k)_t$, $(x_1 \dots x_k)_{t-1}$, \dots , $(x_1 \dots x_k)_{t-M}$

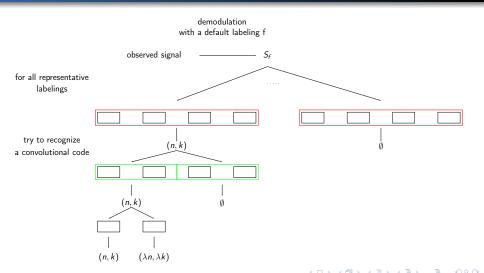
lethod lasses onvolutional code reconstruction omplexity urther work

- Communication System
- 2 Convolutional codes
- Reconstruction of Constellation Labeling
 - Method
 - Classes
 - Convolutional code reconstruction
 - Complexity
 - Further work

Exhaustive method



Our method



Linear and affine classes

- Notation :
 - ullet C a constellation, a the number of bits per symbol.
 - $C_L(f)$ the linear class of f, $C_A(f)$ the affine class of f

Definitions

- We say that two labelings f₁ and f₂ from C to {0,1}^a are linearly equivalent if and only if there exists L a binary invertible a × a matrix such as for all P ∈ C, f₁(P) = f₂(P) · L.
- We say that two labelings f_1 and f_2 from $\mathcal C$ to $\{0,1\}^a$ are affine equivalent if and only if there exists $\mathcal L$ a binary invertible $a \times a$ matrix and v a binary vector of length a such as for all $P \in \mathcal C$, $f_1(P) = f_2(P) \cdot \mathcal L + v$.

Labeling distribution

Table: Number of labelings a = 2, 3, 4

а	Number of labelings
2	24
3	40 320
4	$> 2 * 10^{13}$

Table: Labelings distribution for a = 2, 3, 4

а	(1)	(2)	(3)
2	1	4	6
3	30	8	168
4	64 864 800	16	20 160

- (1) Number of affine classes
- (2) Number of linear classes per affine class
- (3) Number of labelings per linear class

Gray labelings

The "Grayness" of the labelings is compatible to an extent with the linear and affine equivalence relations

Property

Let f_1 be a Gray labeling and let $f_2 \in \mathcal{C}_A(f_1)$, then f_2 is a Gray labeling if and only if there exists \mathcal{L} a permutation matrix and v a vector of $\{0,1\}^a$ such as $\forall P \in \mathcal{C}$, $f_2(P) = f_1(P) \cdot \mathcal{L} + v$.

Method
Classes
Convolutional code reconstruction
Complexity
Further work

Gray labelings

Table: Number of Gray labelings for square constellations 16 - QAM, 64 - QAM and 256 - QAM

а	Number of Gray labelings
4	384
6	414720
8	584 674 836 480

Table: Gray labelings distribution for a = 4, 6, 8

а	(1)	(2)	(3)
4	1	16	24
6	9	64	720
8	56 644	256	40 320

- (1) Number of affine classes containing Gray labelings
- (2) Number of linear classes per affine class
- (3) Number of Gray labelings per linear class

Representatives of classes

• Representatives of affine classes : There exist f_1, \ldots, f_N such as

$$\bigcup_{i=1..N} C_A(f_i) = \mathcal{M}_a$$

and

$$f_i \notin C_A(f_j)$$

- We find them:
 - \bullet Not Gray : by fixing the values of several points of ${\cal C}$ and carry out a backtrack search
 - Gray: with the direct product of two Gray codes (Wesel, Liu, Cioffi, Komminakis)
- Representatives of linear classes :

$$\bigcup_{v\in\mathbb{F}_2^a} C_L(f_i+v) = C_A(f_i)$$

Method Classes Convolutional code reconstruction Complexity Further work

Convolutional code reconstruction

n : code length

k : code dimension

 S_f : the binary sequence observed with labeling f

• $R(S_f) = (n, k, G)$ is the result of convolutional code reconstruction

Test on linear and affine classes

•
$$(f \in C_L(f')) \Rightarrow (R(S_f) = \emptyset \Leftrightarrow R(S_{f'}) = \emptyset)$$

• $S \ll \delta$ the sequence S shifted by $\delta \geq 0$ left positions and $D_{\delta}(S) = S - (S \ll \delta)$.

if
$$\delta$$
 is a multiple of $lcm(n, a)$ we have : $(f' \in C_A(f)) \Rightarrow (R(D_\delta(S_f)) = \emptyset \Leftrightarrow R(D_\delta(S_{f'})) = \emptyset)$

Test on linear class

Property

$$(f \in C_L(f')) \Rightarrow (R(S_f) = \emptyset \Leftrightarrow R(S_{f'}) = \emptyset).$$

Let S_f be a binary sequence produced by an (n, k, m) convolutional encoder using the labeling f

Let
$$lcm(a, n) = \lambda n = \mu a$$
.

We have
$$\forall P \in \mathcal{C}, \ f'(P) = f(P) \cdot \mathcal{L}$$

Note that
$$R(S_f) = (\lambda n, \lambda k, G^{[\lambda]}) \Rightarrow R(S_{f'}) = (\lambda n, \lambda k, G^{[\lambda]} \mathcal{L}^{[\mu]})$$

Test on affine class

- $(f' \in C_A(f)) \Rightarrow (R(S_f) = \emptyset \Leftrightarrow R(S_{f'}) = \emptyset)$
- $S \ll \delta$ the sequence S shifted by $\delta \geq 0$ left positions and $D_{\delta}(S) = S (S \ll \delta)$.

Property

If δ is a multiple of lcm(n, a) we have

$$(f' \in C_A(f)) \Rightarrow (R(D_\delta(S_f)) = \emptyset \Leftrightarrow R(D_\delta(S_{f'})) = \emptyset).$$

Proof :
$$\forall P \in C, f'(P) = f(P) \cdot \mathcal{L} + v$$

 δ multiple of a: the affine part v cancels with the difference.

 δ multiple of n: the sequence $D_{\delta}(S) = S - (S \ll \delta)$ remains a sequence from a convolutional encoder

Complexity

N: the number of affine classes We denote $C_A(x_1), \ldots, C_A(x_s)$ the affine classes selected, n_i the number of linear classes selected in $C_A(x_i)$.

Number of code reconstruction:

• Non gray :
$$N + s2^a + (n_1 + n_2 + \cdots + n_s) \# GL(a, \mathbb{F}_2)$$

• Gray :
$$N + s2^a + (n_1 + n_2 + \cdots + n_s)a!$$

Further work

- Use the relation between linear classes : Let $f_1 \in C_A(f)$ be a linear representative such as $R(S_{f_1}) = (G^{[\lambda]}, \lambda n, \lambda k)$. Then $R(S_{(f_1+\nu)\cdot\mathcal{L}}) = R(S_{f_1\cdot\mathcal{L}}) = (G^{[\lambda]}\mathcal{L}^{[\mu]}, \lambda n, \lambda k)$
- Use the ratio $\frac{k}{n}$ to select the best affine classes Example : (n, k) = (3, 1) we can find (3, 2) codes

Communication System
Convolutional codes
Reconstruction of Constellation Labeling

Method Classes Convolutional code reconstruction Complexity Further work

Thanks for your attention Any questions?