Design des automates algébriques pour les implémentations hardwares et softwares en cryptographie symétrique.

T. P. Berger

XLIM (UMR CNRS 7252), Université de Limoges

Codes et Cryptographie, Dinard, 7-12 Octobre 2012

1/40

This work was partially supported by the French National Agency of Research: ANR-06-SETI-013 and ANR-11-INS-011.

Common work with François Arnault, Cédric Lauradoux, Marine Minier, Benjamin Pousse, Gaël Thomas, ...

Main publications:

- Arnault F., Berger T. P., Minier M., Pousse B.: Revisiting LFSRs for Cryptographic Applications, IEEE Transactions on Information Theory, 57(12), p.8095-8113 (2011)
- Arnault F., Berger T. P., Lauradoux C., Minier M., Pousse B. A New Approach for FCSRs, In Michael J. Jacobson Jr., Vincent Rijmen, Reihaneh Safavi-Naini editors, Selected Areas in Cryptography - SAC 2009,LNCS 5867: 433-448, Springer 2009.
- Arnault F., Berger T. P., Pousse B.: A matrix approach for FCSR automata, Cryptography and Communications, v.3 (2): p.109-139 (2011)

- LFSM
- Implementation
- 2 AFSM
 - I-adic
 - Arithmetic
 - AFSM
- 3 Examples of AFSM
 - \mathbb{F}_2 : LFSRs
 - ℤ: FCSRs
 - $\mathbb{Z}[x]$: Generalization

Autonomous LFSM

An Autonomous Linear Finite State Machine (LFSM) of length n, with ℓ outputs consists of:

- A set of *n* cells, $m = (m_0, \ldots, m_{n-1}) \in \mathbb{F}_2^n$, called the set of *states* of the automaton.
- A linear transition function from \mathbb{F}_2^n to \mathbb{F}_2^n .
- A linear extraction function from \mathbb{F}_2^n to \mathbb{F}_2^ℓ .
- T: $n \times n$ matrix of the transition function,
- C: $n \times \ell$ matrix of the extraction function,
 - Initialization: state $m(0) \in \mathbb{F}_2^n$ at time t = 0
 - From the state m(t) at time t, output: v(t) = Cm(t)
 - Compute a new state m(t+1) = Tm(t)

An example: LFSR in Fibonnaci mode

An example: LFSR in Fibonnaci mode

Another example: LFSR in Galois mode

 $C_2 = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$

Another example: LFSR in Galois mode

$$T_2 = \begin{pmatrix} 0 & 1 & & & & \\ 0 & 1 & & (0) & & \\ 1 & & 1 & & & \\ 0 & & 1 & & & \\ 1 & & & 1 & & \\ 1 & & (0) & & & 1 & \\ 0 & & & & & & 1 \\ 1 & & & & & & & 1 \end{pmatrix}$$

A third example: LFSR in Ring mode

A third example: LFSR in Ring mode

T.P. Berger

Output of LFSMs

$$M_{i}(X) = \sum_{t=0}^{\infty} m_{i}(t)X^{t}$$
$$M = (M_{0}(X), ..., M_{n-1}(X))$$

Theorem

If the initial state of a LFSM is $m = (m_0, ..., m_{n-1})$ then

$${}^{t}M = \frac{Adj(I - XT)}{q(X)} {}^{t}m$$

with $q(X) = \det(I - XT)$.

If det(T) \neq 0 and q(X) primitive, then $M_i(X) = p_i(X)/q(X)$ *m*-sequences of period $2^n - 1$.

Examples continued

for i = 0, 2 or 3, $q_i(X) = \det(I - XT_i) = X^8 + X^6 + X^5 + X^3 + 1$ $Adj(I - XT_3) =$

LFSRs: for what purpose?

Non cryptographic context

- Simulation: hight speed for random numbers generation (Monte Carlo method...)
- Initialization tests of arithmetic circuits in computers
- Implementation of counters...

Cryptographic context

- basic building block for the design of automata in symmetric cryptography
- Good statistical properties
- Proved period...

Depending on the target, 2 types of outputs

- One bit output
- Block of bits output

Efficient implementations

Software applications

- Use the natural bloc structure (8, 16, 32, 64 bits) of the processor and assembly instructions
- Minimize the cycles: pipe-line optimizations, etc...

Hardware applications

- Power consumption
- Area of the circuit, number of gates
- Minimize path, fan-out...

A new concept: diffusion delay

The diffusion delay is the smallest number d, such that there exist two cells m_i and m_j with the following property: the successive values $m_i(0)$, ..., $m_j(d-1)$ are independent of the value $m_i(0)$.

Definition

Diffusion delay = Diameter of the graph of connection of the cells

One bit output: hardware implementations

Fibonnaci

• Galois $\xrightarrow{m_7}$ $\xrightarrow{m_6}$ $\xrightarrow{m_5}$ $\xrightarrow{m_4}$ $\xrightarrow{m_3}$ $\xrightarrow{m_2}$ $\xrightarrow{m_1}$ $\xrightarrow{m_0}$

	Critical path	Fan-out	Cost	Diffusion delay
Galois	1	pprox n/2	$\approx n/2$	n-1
Fibonacci	$\approx n/2$	2	$\approx n/2$	n-1

One bit output: hardware implementations

• Ring

	Critical path	Fan-out	Cost	Diffusion delay
Mrugalski & all	2	3	$\approx n/2$	$\approx n/2$
Optimal Ring	1	2	$\approx n/2$	$\approx n/4$

Words oriented software implementations

 Twisted Generalized Feedback Shifts Registers Matsumoto & Kurita 1992, Matsumoto & Nishurima 1998

$$A = \begin{pmatrix} 0 & I_w & & & \\ & 0 & I_w & & (0) & \\ & & 0 & I_w & & \\ & & 0 & V_w & & \\ & & & 0 & I_w \\ I_w & 0 & \cdots & L & 0 & 0 \end{pmatrix}$$

 I_w : $w \times w$ identity matrix, L: a $w \times w$ binary matrix.

Words oriented software implementations

 Multiple-Recursive Matrix Method H. Niederreiter 1995, see also Marsaglia 2003 (Xorshift PRNG)

$$A = \begin{pmatrix} 0 & I_w & & & \\ & 0 & I_w & & (0) \\ & & 0 & I_w & \\ & & & 0 & I_w \\ & & & & & \\ & & & 0 & I_w \\ A_r & A_{r-1} & A_{r-2} & \dots & A_2 & A_1 \end{pmatrix}$$

 I_w : $w \times w$ identity matrix, A_i : software efficient transformations (right or left shifts, word rotations).

$$q(X) = \det(I - XA) = \det\left(I + \sum_{j=1}^{r} X^{j}A_{j}\right)$$

Word-oriented ring LFSRs

• F. Arnault, T.P. B., M. Minier, P. Pousse, 2011

Optimal, both in hardware and software. Problem How to construct good word-ring LFSRs ?

Word-oriented ring LFSRs

• F. Arnault, T.P. B., M. Minier, P. Pousse, 2011

Optimal, both in hardware and software. Problem How to construct good word-ring LFSRs ?

l-adic topology

 $\mathcal{A}: \text{unitary commutative ring.} \quad \mathcal{I} = <\pi> \text{ such that}$

- π is not a 0 divisor.
- $\bigcap_{n\in\mathbb{N}} \mathfrak{I}^n = \{0\}$

Ultrametric distance: $d(x, y) = \begin{cases} 2^{-k} & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases} \text{ with } k = \max\{n \in \mathbb{N}, x - y \in \mathbb{J}^n\}$

Associated *I*-adic (π -adic) topology.

Topologic completion of \mathcal{A} : $\mathcal{A}_{\mathcal{I}}$ (or \mathcal{A}_{π}).

l-adic topology

 \mathcal{A} :unitary commutative ring. $\mathcal{I} = <\pi>$ such that

- π is not a 0 divisor.
- $\bigcap_{n\in\mathbb{N}} \mathfrak{I}^n = \{0\}$

Ultrametric distance: $d(x, y) = \begin{cases} 2^{-k} & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases} \quad \text{with } k = \max\{n \in \mathbb{N}, x - y \in \mathbb{J}^n\}$

Associated *I*-adic (π -adic) topology.

Topologic completion of \mathcal{A} : $\mathcal{A}_{\mathcal{I}}$ (or \mathcal{A}_{π}).

l-adic topology

 \mathcal{A} :unitary commutative ring. $\mathcal{I} = <\pi>$ such that

- π is not a 0 divisor.
- $\bigcap_{n\in\mathbb{N}} \mathfrak{I}^n = \{0\}$

Ultrametric distance: $d(x, y) = \begin{cases} 2^{-k} & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases} \quad \text{with } k = \max\{n \in \mathbb{N}, x - y \in \mathbb{J}^n\}$

Associated *I*-adic (π -adic) topology.

Topologic completion of \mathcal{A} : $\mathcal{A}_{\mathcal{I}}$ (or \mathcal{A}_{π}).

mod_{π} function

Suppose that there exist 2 functions

$$\mathsf{mod}_{\pi}:\mathcal{A}\longrightarrow \mathbb{S}\subseteq\mathcal{A}$$
 $\mathsf{div}_{\pi}:\mathcal{A}\longrightarrow\mathcal{A}$

such that

Set S

1

$$a = \pi \operatorname{div}_{\pi}(a) + \operatorname{mod}_{\pi}(a)$$
 for all a
= mod $_{\pi}(\mathcal{A})$.

More requirement:

- S is a set of representatives of $\mathcal{A}/(\pi)$
- 0, $1 \in S$.

mod_{π} function

Suppose that there exist 2 functions

$$\mathsf{mod}_{\pi}:\mathcal{A}\longrightarrow \mathbb{S}\subseteq\mathcal{A}$$
 $\mathsf{div}_{\pi}:\mathcal{A}\longrightarrow\mathcal{A}$

such that

$$a = \pi \operatorname{div}_{\pi}(a) + \operatorname{mod}_{\pi}(a)$$
 for all a

Set $S = \text{mod}_{\pi}(\mathcal{A})$.

1

More requirement:

- S is a set of representatives of $\mathcal{A}/(\pi)$
- $\bullet \ 0, \ 1 \in \mathbb{S}.$

T.P. Berger

Convergence

For $a \in \mathcal{A}$, set $ext{seq}_{\pi}(a) = (s_n)_{n \in \mathbb{N}}$ with

 $s_n = \operatorname{mod}_{\pi}(\operatorname{div}_{\pi}^n(a)).$

23 / 40

Theorem

Set $a \in A$ and $s = seq_{\pi}(a)$. The series $\sum_{n \in \mathbb{N}} s_n \pi^n \in A_{\pi}$ is convergent in A_{π} , moreover $a = \sum_{n \in \mathbb{N}} s_n \pi^n$.

"Integers"

Integers

$$\mathfrak{F} = \{ a \in \mathcal{A}_{\pi} \mid \exists n \in \mathbb{N}^*, \operatorname{div}_{\pi}{}^n(a) = 0 \}.$$

Signed integers

$$\mathcal{Z} = \{ a - b \mid a, b \in \mathcal{F} \}.$$

arithmetic

If S is finite, elements of \mathcal{Z} are representable on computers If s + t and st are in \mathcal{Z} and known, it is possible to provide an effective arithmetic on \mathcal{Z} .

Periodic elements

Set \mathcal{P} the set of periodic elements of \mathcal{A}_{π} , i.e. such that seq_{π}(*a*) is ultimately periodic.

Lemma

$$\mathcal{P} = \{ p = a' p(T) + a'' \}$$

with a',
$$a'' \in \mathbb{Z}$$
 and $p(T) = \sum_{i=0}^{\infty} p^{iT} (= 1/(1 - p^T)).$

Proposition

$$\mathcal{Z} \subseteq \mathcal{P}.$$

Rational elements

Set $\Omega = \{u/v \mid u, v \in \mathbb{Z}, v \text{ invertible in } \mathbb{Z}_{\pi}\}.$

Proposition

$$\mathfrak{Q} = \{u/(1+\pi v) \mid u, v \in \mathfrak{Z}\}$$

Proposition

$$\mathcal{P} \subseteq \mathcal{Q}.$$

Definition

An algebraic automata on \mathcal{Z} of size $n \in \mathbb{N}^*$ is constituted of

- a set of states $(m,c)\in \mathbb{S}^n imes \mathcal{A}^n_\pi$
- a transition function given by a $n \times n$ matrix T with coefficients in A_{π} .

If the automaton is in the state m(t), c(t) at times t, then

$$\left\{ egin{array}{rll} z(t+1) &=& Tm(t)+c(t) \ m(t+1) &=& {
m mod}_{\pi}(z(t+1)) \ c(t+1) &=& {
m div}_{\pi}(z(t+1)) \end{array}
ight.$$

 $M(t) = (M_0(t), ..., M_{n-1}(t))$ is the *n*-tuple of π -adic integers observed in the cells m_0 , m_{n-1} from time *t*.

Proposition

$$M(t+1) = TM(t) + c(t).$$

Theorem

If the automaton is in state (m, c) at time t_0 , then

$$M(t_0) = \frac{\operatorname{adj}(I - \pi T)}{\operatorname{det}(I - \pi T)} \cdot (m(t_0) + \pi c(t_0))$$

Problem: an algebraic automaton is not necessary finite.

T.P. Berger

XLIM, UMR CNRS 7251, Limoges AFSM C2 2012 , Dinard 30 / 40

 $M(t) = (M_0(t), ..., M_{n-1}(t))$ is the *n*-tuple of π -adic integers observed in the cells m_0 , m_{n-1} from time *t*.

Proposition

$$M(t+1) = TM(t) + c(t).$$

Theorem

If the automaton is in state (m, c) at time t_0 , then

$$M(t_0) = \frac{\operatorname{adj}(I - \pi T)}{\operatorname{det}(I - \pi T)} \cdot (m(t_0) + \pi c(t_0))$$

Problem: an algebraic automaton is not necessary finite.

T.P. Berger

LIM, UMR CNRS 7251, Limoges AFSM C2 2012 , Dinard 30 / 40

 $M(t) = (M_0(t), ..., M_{n-1}(t))$ is the *n*-tuple of π -adic integers observed in the cells m_0 , m_{n-1} from time *t*.

Proposition

$$M(t+1) = TM(t) + c(t).$$

Theorem

If the automaton is in state (m, c) at time t_0 , then

$$M(t_0) = \frac{\operatorname{adj}(I - \pi T)}{\operatorname{det}(I - \pi T)} \cdot (m(t_0) + \pi c(t_0))$$

Problem: an algebraic automaton is not necessary finite.

T.P. Berger

Example: $\mathcal{A} = \mathbb{F}_2[x]$

- A = 𝔽₂[x], π = x, T with coefficients in 𝔽₂
 ⇒ classical binary LFSRs (or LFSMs).
- A = 𝔽₂[x], π = x^d, T with coefficients t_{i,j}(x), deg(t_{i,j}) < d
 ⇒ d-parallelized binary LFSRs .
- $\mathcal{A} = \mathbb{F}_2[x], \ \pi = x \text{ and } T$ with rational coefficients \Rightarrow Global definition of binary LFSRs .

An example of global description

$$T = \begin{pmatrix} 0 & P_1(X)/Q_1(X) & 0 \\ 0 & 0 & P_2(X)/Q_2(X) \\ P_3(X)/Q_3(X) & 0 & 0 \end{pmatrix}$$

 $\det(I - XT) = \frac{Q_1(X)Q_2(X)Q_3(X) + X^3P_1(X)P_2(X)P_3(X)}{Q_1(X)Q_2(X)Q_3(X)}$

T.P. Berger

XLIM, UMR CNRS 7251, Limoges AFSM C2 2012, Dinard 33 / 40

An example of global description

$$T = \begin{pmatrix} 0 & P_1(X)/Q_1(X) & 0 \\ 0 & 0 & P_2(X)/Q_2(X) \\ P_3(X)/Q_3(X) & 0 & 0 \end{pmatrix}$$

$$\det(I - XT) = \frac{Q_1(X)Q_2(X)Q_3(X) + X^3P_1(X)P_2(X)P_3(X)}{Q_1(X)Q_2(X)Q_3(X)}$$

$$+ P_{3}(X)/Q_{3}(X)$$

$$+ P_{2}(X)/Q_{2}(X)$$

$$+ P_{1}(X)/Q_{1}(X)$$

T.P. Berger

XLIM, UMR CNRS 7251, Limoges AFSM C2 2012 , Dinard 33 / 40

An example of global description

$$T = \begin{pmatrix} 0 & P_1(X)/Q_1(X) & 0 \\ 0 & 0 & P_2(X)/Q_2(X) \\ P_3(X)/Q_3(X) & 0 & 0 \end{pmatrix}$$

$$\det(I - XT) = \frac{Q_1(X)Q_2(X)Q_3(X) + X^3P_1(X)P_2(X)P_3(X)}{Q_1(X)Q_2(X)Q_3(X)}$$

$$P_{3}(X)/Q_{3}(X)$$

$$P_{2}(X)/Q_{2}(X)$$

$$P_{1}(X)/Q_{1}(X)$$

Example: $\mathcal{A} = \mathbb{Z}$

• $\pi = 2$, T binary

 \Rightarrow 2-adic integers, classical FCSRs (Feedback with Carry Shift Registers).

 π = 2, T with coefficients in Z: a more general framework can be always realized with binary FCSRs

All the software or hardware oriented design of LFSRs can be directly applied to FCSRs!

Example: $\mathcal{A} = \mathbb{Z}$

• $\pi = 2$, T binary

 \Rightarrow 2-adic integers, classical FCSRs (Feedback with Carry Shift Registers).

• $\pi = 2$, T with coefficients in \mathbb{Z} : a more general framework can be always realized with binary FCSRs

All the software or hardware oriented design of LFSRs can be directly applied to FCSRs!

Example: $\mathcal{A} = \mathbb{Z}$

• $\pi = 2$, T binary

 \Rightarrow 2-adic integers, classical FCSRs (Feedback with Carry Shift Registers).

• $\pi = 2$, T with coefficients in \mathbb{Z} : a more general framework can be always realized with binary FCSRs

All the software or hardware oriented design of LFSRs can be directly applied to FCSRs!

FCSR automaton for $\operatorname{GLUON} 64$

18 blocs of 8 bits FCSR of 144 bits + 73 bits of carries

FCSR automaton for GLUON 64

18 blocs of 8 bits FCSR of 144 bits + 73 bits of carries

Corresponding matrix

	/0 I	0	$0 \ 0 \ 0$	0	$0 \ 0$	0	$0 \ 0$	$0 \ 0$	0	I	0	0	١
	00	Ι	$0 \ 0 \ 0$	0	0 0	0	0 0	0 0	0	0	0	0	
	00	0	$I \ 0 \ 0$	0	$I \ 0$	0	0 0	0 0	0	0	0	0	
	0.0	SR^5	$0\ I\ 0$	0	$0 \ 0$	0	0 0	0 0	0	0	0	0	
	00	0	$0 \ 0 \ I$	0	$0 \ 0$	0	0 0	0 0	0	0	0	0	
	00	0	$0 \ 0 \ 0$	Ι	$0 \ 0$	0	0.0	I 0	0	0	0	0	
	0.0	0	$0 \ 0 \ 0$	0	$I \ 0$	0	$0 \ 0$	0 0	0	0	SL^3	0	
	00	0	$0 \ 0 \ 0$	0	0~I	0	$0 \ 0$	0 0	0	0	0	0	
_	00	0	$0 \ 0 \ 0$	0	$0 \ 0$	Ι	0 I	$0 \ 0$	0	0	0	0	
-	00	0	$0 \ 0 \ 0$	0	$0 \ 0$	0	$I \ 0$	0 0	0	0	0	0	
	0.0	0	$0 \ 0 \ 0$	0	$0 \ 0$	0	0 I	0 0	0	0	0	0	
	00	0	$0 \ 0 \ 0$	0	$0 \ 0$	0	0.0	I 0	0	0	0	SR^5	
	00	0	$0 \ 0 \ I$	0	$0 \ 0$	0	$0 \ 0$	0 I	0	0	0	0	
	00	0	$0 \ 0 \ 0$	0	$0 \ 0$	SL^1	$0 \ 0$	0 0	Ι	0	0	0	
	0.0	0	$I \ 0 \ 0$	0	$0 \ 0$	0	$0 \ 0$	$0 \ 0$	0	I	0	0	
	0.0	0	$0 \ 0 \ 0$	0	$0 \ 0$	0	$0 \ 0$	$0 \ 0$	0	0	Ι	0	
	0.0	0	$0 \ 0 \ 0$	SR^3	$0 \ 0$	0	$0 \ 0$	0 0	0	0	0	Ι	
	I 0	0	$0 \ 0 \ 0$	0	$0 \ 0$	0	$0 \ 0$	$0 \ 0$	SL^6	0	0	0	1

T =

•
$$p(x) = x^d - \sum_{i=0}^{d-1} \epsilon_i x^i$$
, $\epsilon_i \in \{0, 1\}$, $\pi = 2$.

 \Rightarrow V-FCSRs introduced by Allailou, Marjane and Mokrane for Galois and Fibonnaci mode.

Can be generalized to any mode.

In fact, the practical implementation of V-FCSRs is nothing else than non-optimal binary FCSRs. $^{\rm 1}$

•
$$p(x) = x^d - n, \ \pi = x.$$

 $\Rightarrow \mathcal{A} = \mathbb{Z}[\sqrt[d]{n}]$ and $\pi = \sqrt[d]{n}$. Generalization introduced by Klapper et Goresky.

⁺Berger T.P., Minier M., Cryptanalysis of Pseudo-random Generators Based on Vectorial FCSRs, Indocrypt 2012, Kolkata.

•
$$p(x) = x^d - \sum_{i=0}^{d-1} \epsilon_i x^i$$
, $\epsilon_i \in \{0, 1\}$, $\pi = 2$.

 \Rightarrow V-FCSRs introduced by Allailou, Marjane and Mokrane for Galois and Fibonnaci mode.

Can be generalized to any mode.

In fact, the practical implementation of V-FCSRs is nothing else than non-optimal binary FCSRs. $^{\rm 1}$

•
$$p(x) = x^d - n, \ \pi = x.$$

 $\Rightarrow \mathcal{A} = \mathbb{Z}[\sqrt[d]{n}]$ and $\pi = \sqrt[d]{n}$. Generalization introduced by Klapper et Goresky.

¹Berger T.P., Minier M., Cryptanalysis of Pseudo-random Generators Based on Vectorial FCSRs, Indocrypt 2012, Kolkata.

•
$$p(x) = x^d - \sum_{i=0}^{d-1} \epsilon_i x^i$$
, $\epsilon_i \in \{0, 1\}$, $\pi = 2$.

 \Rightarrow V-FCSRs introduced by Allailou, Marjane and Mokrane for Galois and Fibonnaci mode.

Can be generalized to any mode.

In fact, the practical implementation of V-FCSRs is nothing else than non-optimal binary FCSRs. $^{\rm 1}$

•
$$p(x) = x^d - n, \ \pi = x.$$

 $\Rightarrow \mathcal{A} = \mathbb{Z}[\sqrt[d]{n}]$ and $\pi = \sqrt[d]{n}$. Generalization introduced by Klapper et Goresky.

¹Berger T.P., Minier M., Cryptanalysis of Pseudo-random Generators Based on Vectorial FCSRs, Indocrypt 2012, Kolkata.

•
$$p(x) = x^d - \sum_{i=0}^{d-1} \epsilon_i x^i$$
, $\epsilon_i \in \{0, 1\}$, $\pi = 2$.

 \Rightarrow V-FCSRs introduced by Allailou, Marjane and Mokrane for Galois and Fibonnaci mode.

Can be generalized to any mode.

In fact, the practical implementation of V-FCSRs is nothing else than non-optimal binary FCSRs. $^{\rm 1}$

•
$$p(x) = x^d - n, \ \pi = x.$$

 $\Rightarrow \mathcal{A} = \mathbb{Z}[\sqrt[d]{n}]$ and $\pi = \sqrt[d]{n}$. Generalization introduced by Klapper et Goresky.

¹Berger T.P., Minier M., Cryptanalysis of Pseudo-random Generators Based on Vectorial FCSRs, Indocrypt 2012, Kolkata.

A new example?

$$\mathcal{A} = \mathbb{Z}[x]/p(x), \ p(x) = \pi(X)^d - N$$
 unitary

- In this case, AFSM are finite automata
- It seems that they cannot be reduced to classical FCSRs.
- Reconstruction algorithms for such sequences?