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Description of Hamsi-256

Hamsi Hash Function

Designed by Özgül Küçük in 2008 for the SHA-3 competition.
Selected by NIST for the 2nd round (14 candidates).

Compression function of Hamsi-256

message block

chain valuemessage block

256-bit 256-bit

chain value

Concatenation

32-bit

Permutation P
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Description of Hamsi-256

Concatenation

State : 4× 4 matrix of 32-bit words
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Description of Hamsi-256

Permutation P

3 rounds of a 512-bit round permutation R

XOR of constants

Substitution by 4× 4-bit Sboxes

Di�usion by a linear transformation L
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Description of Hamsi-256

Substitution

128 parallel applications of a 4× 4 Sbox S
S is a Serpent Sbox

S = {8, 6, 7, 9, 3, 12, 10, 15, 13, 1, 14, 4, 0, 11, 5, 2}
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Description of Hamsi-256

Di�usion

4 parallel applications of a linear function L

L : F128
2 → F128

2

L(a, b, c, d) = (a′, b′, c′, d′),

a

b

c

d

a′

b′

c′

d′

Each bit of a′ and c′ is the XOR of 7 bits of a, b, c, d.

Each bit of b′ and d′ is the XOR of 3 bits of a, b, c, d.
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Thomas Fuhr's attack

First second preimage attack against Hamsi-256 by Thomas Fuhr
(Asiacrypt 2010)

Idea:

Find some output bits which can be expressed as an a�ne function of
some inputs bits when the other input bits are �xed to any arbitrary value.

Build the linear system.

Solve the system (�nd preimages for the compression function).

Use a meet-in-the-middle algorithm to extend these pseudo-preimages
to second preimages for the hash function.
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Thomas Fuhr's attack

Description of the attack in [Fuhr10]

Important property of S

S(1, x, 0, x̄) = (1, 0, 0, x) ∀x ∈ F2

Fix Nvar positions i = 1, . . . , Nvar (here Nvar = 4).

Choose a message block m such that si0 = 1 (resp. si1 = 1) and
si8 = 0 (resp. si8 = 1).

Consider Nvar variables xi, i = 1, . . . , Nvar.
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Thomas Fuhr's attack

1

0
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Sboxes

Linear Layer

After the �rst round, the state is linear in the input variables, for
any choice of the other constants.
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Thomas Fuhr's attack

4 di�erent situations

All the input bits are constant.

S

c

c

c

c c

c

c

c

All output bits are constant.
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Thomas Fuhr's attack

4 di�erent situations

At most one input bit depends on one variable (or a a�ne
combination of variables).

S

c

x3

c

c A(x3)

A(x3)

A(x3)

A(x3)

All output bits are an a�ne combination of this variable.
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Thomas Fuhr's attack

4 di�erent situations

At least two input bits depend on the same variable (or the same
a�ne combination of variables).

S

c

x3

c

x3 A(x3)

A(x3)

A(x3)

A(x3)

All output bits are an a�ne combination of this variable.
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4 di�erent situations

At least two input bits depend on at least two di�erent variables.
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Thomas Fuhr's attack

4 di�erent situations

At least two input bits depend on at least two di�erent variables.

S

c

x3

c

x5

?

?

?

?

Are all output bits non-linear?
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Thomas Fuhr's attack

Two properties of S noticed by Thomas Fuhr

y0 is of degree at most 1 if x0x2 is of degree at most 1.

y3 is of degree at most 1 if x1x3 and x0x1x2 are of degree at most 1.

y0 = x0x2 + x1 + x2 + x3

y1 = x0x1x2 + x0x1x3 + x0x2x3 + x1x2 + x0x3 + x2x3 + x0 + x1 + x2

y2 = x0x1x3 + x0x2x3 + x1x2 + x1x3 + x2x3 + x0 + x1 + x3

y3 = x0x1x2 + x1x3 + x0 + x1 + x2 + 1.
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Thomas Fuhr's attack

Two properties of S noticed by Thomas Fuhr

y0 is of degree at most 1 if x0x2 is of degree at most 1.

y3 is of degree at most 1 if x1x3 and x0x1x2 are of degree at most 1.

y0 = x0x2 + x1 + x2 + x3

y1 = x0x1x2 + x0x1x3 + x0x2x3 + x1x2 + x0x3 + x2x3 + x0 + x1 + x2

y2 = x0x1x3 + x0x2x3 + x1x2 + x1x3 + x2x3 + x0 + x1 + x3

y3 = x0x1x2 + x1x3 + x0 + x1 + x2 + 1.

Results (PhD of T. Fuhr)

16 a�ne equations on 8 variables.
11 a�ne equations on 9 variables.
9 a�ne equations on 10 variables.
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Improvement of the attack

An equivalent notation

y0 is of degree at most 1 if x0x2 is of degree at most 1.ww�
y0 is of degree at most 1 if x ∈ V ⊥ ⊂ F4

2 with V = 〈1〉 , V = 〈4〉 or
V = 〈5〉, or to any coset of these hyperplanes.

y3 is of degree at most 1 if x1x3 and x0x1x2 are of degree at most 1.ww�
y3 is of degree at most 1 if x belongs to any coset of V ⊥ ⊂ F4

2 with
V = 〈1, 2〉 , V = 〈2, 4〉 or V = 〈2, 5〉.
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Improvement of the attack

We have identi�ed many such relations for S with dimV = 2

〈1, 2〉 {1, 6, 7, 8, 9, e, f}
〈1, 4〉 {1, e, f}
〈1, 6〉 {1, 4, 5, a, b, e, f}
〈1, 8〉 {1, e, f}
〈1, a〉 {1, 2, 3, c, d, e, f}
〈1, c〉 {1, e, f}
〈1, e〉 {1, e, f}
〈2, 4〉 {1, 8, 9}
〈2, 5〉 {1, 8, 9}
〈2, 8〉 {e}
〈2, 9〉 {e}
〈2, d〉 {f}
〈3, 4〉 {1, 6, 7}
...

...

35 properties in total
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Improvement of the attack

Improvement of the attack of [Fuhr10]

1. Use these properties to search for a�ne propagation of the input
variables through the 2nd and the 3rd round.

2. Use the following relations of S to go through the 1st round.

S(1, x, 0, x̄) = (1, 0, 0, x) ∀x ∈ F2

S(1, x, 0, x) = (0, x, 1, 0) ∀x ∈ F2

3. Track backwards the propagation of the output bits to �x the input
variables.

Results

13 a�ne equations on 9 variables.
11 a�ne equations on 10 variables.
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(v, w)-linear functions

The notion of (v, w)-linearity

De�nition

Let S be a function from Fn2 into Fm2 . Then, S is said to be (v, w)-linear if
there exist two subspaces V ⊂ Fn2 and W ⊂ Fm2 with dimV = v and
dimW = w such that, for all λ ∈W , Sλ has degree at most 1 on all
cosets of V , where Sλ is the Boolean function x 7→ λ · S(x).

We used that the Sbox of Hamsi is (3, 2)-linear for some (V,W ), and that
it is (2,2)-linear for many (V,W ).
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(v, w)-linear functions

Link with the Maiorana-McFarland construction

A function S from Fn2 into Fm2 is (v, w)-linear if the function SW that
corresponds to all the components Sλ , λ ∈W can be written as

SW (u, v) = M(u)v +G(u),

where U × V = Fn2 , G is a function from U in Fw2 and M(u) is a w × v
binary matrix.

Generalisation of the Maiorana-McFarland construction

The degree of each Sλ is at most dimU + 1 = n+ 1− v.
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(v, w)-linear functions

Boolean functions that are equivalent to the Maiorana-McFarland
construction can be characterized by their second-order derivatives.
(Similar for vectorial functions)

Proposition

Let S be a function from Fn2 into Fm2 . Then, S is (v, w)-linear if and only
if there exists a subset of w independent components of S,
SW = (Si1 , . . . , Siw), and a linear subspace V of dimension v such that all
second-order derivatives of SW , DαDβSW with α, β ∈ V vanish.

Easy algorithm for �nding all (v, w)-linear subspaces.
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(v, w)-linear functions

Link with non-linearity

Proposition

Let S be a function from Fn2 into Fm2 . If S is (v, w)-linear, then S has w
weakly v-normal coordinates. In particular, L(S) ≥ 2v.
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(v, w)-linear functions

(n− 1, 1)-linear functions

Proposition

Let f be a Boolean function of n variables. Then, f is (n− 1, 1)-linear if
and only if deg f ≤ 2 and L(f) ≥ 2n−1. Moreover, if deg(f) = 2 and
L(f) ≥ 2n−1, there exist exactly 3 distinct hyperplanes H such that f has
degree at most 1 on both H and H̄.

Remark : The number of subspaces for which S is (n− 1, 1)-linear is
determined by the number of the quadratic components of S.
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(v, w)-linear functions

Classi�cation of 4× 4 Sboxes

A 4× 4 Sbox S with optimal linearity (L(S) = 8) has 0, 1, 3, or 7
quadratic components.

Sboxes with 15 quadratic components have one linear component.

Sboxes with 7 quadratic components are not optimal against
di�erential cryptanalysis.

Merci pour votre attention !
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