

# Multiple differential cryptanalysis using LLR and $\chi^2$ Statistics

Céline Blondeau joint work with Benoît Gérard and Kaisa Nyberg

October 8, 2012



# **Outline**

### Introduction

Block Ciphers
Differential Cryptanalysis
Last Round Attacks

# Multiple Differential Cryptanalysis

Definition
Partitioning Function
Complexities

### **Experiments**

Experimental Results Analyse



# **Outline**

### Introduction

Block Ciphers
Differential Cryptanalysis
Last Round Attacks

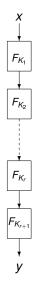
## Multiple Differential Cryptanalysis

Definition Partitioning Functior Complexities

### Experiments

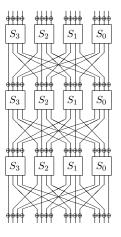
Experimental Results Analyse

# **Block ciphers**



 $E_K: \mathbb{F}_2^m o \mathbb{F}_2^m$ 

- ▶ K: Master key
- F: Round function
- ► *K<sub>i</sub>*: Round key



SMALLPRESENT-[4]

### Statistical Attacks

### Statistical attacks:

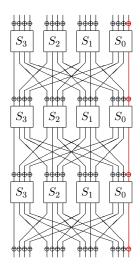
- Take advantage of a non-uniform behavior of the cipher
- Two families: Linear and Differential cryptanalysis

## Improvement of differential cryptanalysis

- Differential cryptanalysis [Biham Shamir 91]
- Truncated differential cryptanalysis [Knudsen 95]
- Impossible differential cryptanalysis [Biham Biryukov Shamir 99]
- Higher order differential cryptanalysis [Lai 94] [Knudsen 95]
- Multiple differential cryptanalysis (First approach) [BG 11]



# **Linear cryptanalysis**



# [Tardy-Gilbert91], [Matsui93]

Linear relation using

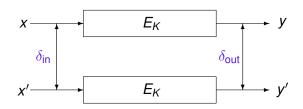
- plaintext bits,
- key bits,
- ciphertext bits.

$$\pi \cdot \mathbf{X} \oplus \kappa \cdot \mathbf{K} \oplus \gamma \cdot \mathbf{y} = \mathbf{0}$$

with probability  $p = \frac{1}{2} + \varepsilon$ 

# **Differential Cryptanalysis**

Given an input difference between two plaintexts, some output differences occur more often than others.



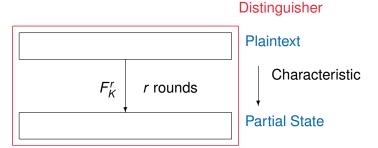
Differential: pair of input and output difference  $(\delta_{in}, \delta_{out})$ 

Differential probability:  $p = P_{X,K}[E_K(X) \oplus E_K(X \oplus \delta_{in}) = \delta_{out}]$ 

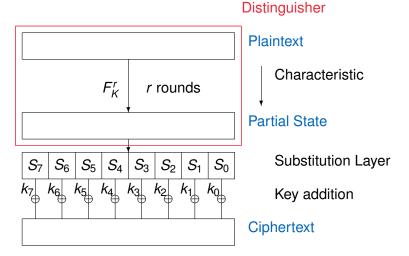
Uniform probability:  $\theta = 2^{-m}$ 



## **Last Round Attack**



# **Last Round Attack**



### **Related Work**

### Linear Cryptanalysis:

- Multiple linear cryptanalysis [Baignères, Junod, Vaudenay 04]
- Multidimensional linear cryptanalysis [Hermelin, Cho, Nyberg 08]

Both use LLR and/or  $\chi^2$  statistical tests.

# Differential Cryptanalysis:

- ► [Blondeau, Gérard 11]: The frequencies are sum up
- ► Here: We study the LLR and/or  $\chi^2$  statistical tests.

# Multiple differential cryptanalysis (First Approach)

- ▶ Set of differences  $\delta_{in}^{(v)}$ ,  $\delta_{out}^{(v)}$
- ▶ With probabilities  $p_{\nu} = P_{X,K}[E_{K}(X) \oplus E_{K}(X \oplus \delta_{\text{in}}^{(\nu)}) = \delta_{\text{out}}^{(\nu)}].$
- ▶ Set of input differences  $\delta_{in}^{(v)} \in \Delta_{in}$ .
- $p = \frac{1}{\Delta_{in}} \sum_{\nu} p_{\nu}$  expected probability.
- $\theta = \frac{1}{\Delta_{in}} \sum_{V} \frac{1}{2^m}$  uniform probability.

# **Outline**

### Introduction

Block Ciphers
Differential Cryptanalysis
Last Round Attacks

# Multiple Differential Cryptanalysis

Definition Partitioning Functior Complexities

### Experiments

Experimental Results Analyse



# **Multiple Differential Cryptanalysis**

- Fix input difference  $\delta_{in}$  (To simplify the analysis)
- Vector of "difference":  $V = [\delta_{\text{out}}^{(i)}]$  after r rounds,
- ▶  $p = [p_v]_{v \in V}$  vector of expected probabilities.
- $\theta = [\theta_v]_{v \in V}$  vector of uniform probabilities.

# **Discussion**

### Parallel Work for small ciphers: [Albrecht Leander 2012]

Whole distribution taken for SMALLPRESENT-[4] (16-bit cipher) Whole distribution taken for KATAN-32 (32-bit cipher)

### Limits:

For actual ciphers the output size is too large (2<sup>64</sup> or 2<sup>128</sup>)

### Application to real cipher:

Introduction of partitioning functions.

# **Partitioning function**

We analyze two "orthogonal" cases

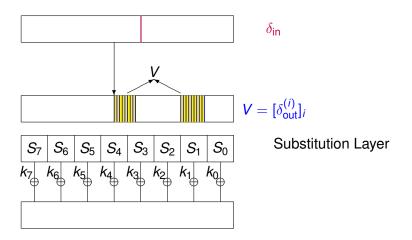
- Unbalanced partitioning
  - Take a subset of simple differences
- Balanced partitioning
  - Group the differences in order to be able to use information of the whole output space.

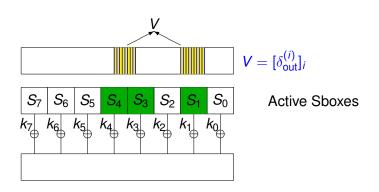
# **Unbalanced Partitioning**

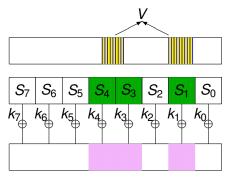
Idea: Subset of simple differences

- Output differences  $(\delta_{out}^{(i)})_{1 \leq i \leq A}$ ,
- Counter for each of these differentials q<sub>i</sub><sup>k</sup>.
- ► As  $\sum_{i=1}^{A} q_i^k \neq 1$
- ▶ We have a "trash" counter  $q_0^k$  which gather all other output differences.

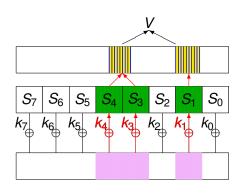
We increment the counter  $q_i^k$  if the difference  $\delta_{out}^{(i)}$  is obtained after partial deciphering.



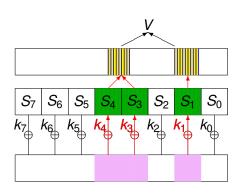




Sieving process Discard some ciphertext pairs

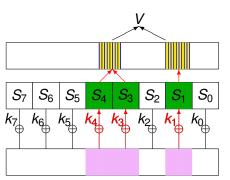


For all key candidates, partially decipher



If 
$$\delta = \delta_{\text{out}}^{(i)}$$
Increment  $q_i^k$ 

Otherwise Increment  $q_0^k$ 



If 
$$\delta = \delta_{\text{out}}^{(i)}$$
Increment  $q_i^k$ 

Otherwise Increment  $q_0^k$ 

Analyse the vectors  $q^k$  for each key Scoring function



# **Unbalanced Partionning: Remarks**

### Corresponding known/former attacks:

Differential cryptanalysis.

### Advantage:

▶ A sieving process ⇒ "smaller" time complexity

### Disadvantage:

- Subset of output space ⇒ not all information
- ► Small Probabilities ⇒ Non-tightness of the information

# **Balanced Partitioning**

Idea: Using information from all output differences by grouping them.

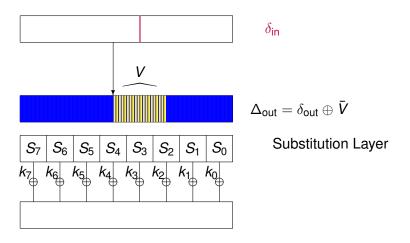
Let 
$$V = [\delta_{\mathsf{out}}^{(i)}]_i$$
 a subspace of  $\mathbb{F}_2^m$ 

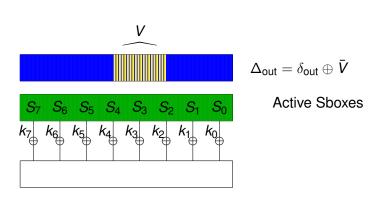
A group of differences 
$$\Delta_{\mathsf{out}}^{(i)} = \delta_{\mathsf{out}}^{(i)} \oplus ar{V}$$
  $(ar{V} \oplus V = \mathbb{F}_2^m)$ 

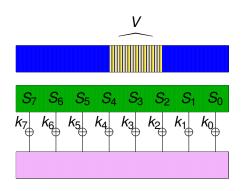
A counter  $q_i^k$  for each group of differences.

We increment the counter  $q_i^k$ 

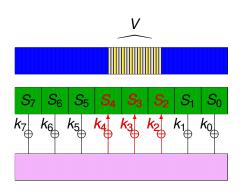
if the difference  $\delta \in \Delta_{\mathit{out}}^{(i)}$  is obtained partial deciphering.





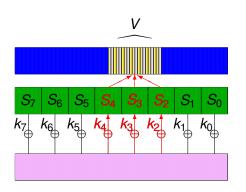


No Sieving process Partially decipher for all pairs

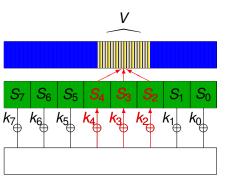


For all key candidates, partially decipher





If 
$$\delta \in \delta_{\mathsf{out}}^{(i)} \oplus \bar{V}$$
Increment  $q_i^k$ 



If 
$$\delta \in \delta_{\mathsf{out}}^{(i)} \oplus \bar{V}$$
Increment  $q_i^k$ 

Analyse the vectors  $q^k$  for each key Scoring function

# **Balanced Partitioning: Remarks**

## Corresponding known/former attacks:

Truncated Differential cryptanalysis.

### Advantage:

- Whole output space ⇒ More information
- ▶ Bigger Probabilities ⇒ Tightness of the information

## Disadvantage:

No sieving process ⇒ More time complexity

# Statistical Tests

Probability distribution vectors

- Expected:  $p = [p_v]_{v \in V}$
- ▶ Uniform: *θ*
- Observed:  $q^k$  (for a given key candidate)

LLR test: requires the knowledge of the theoretical probability p.

$$S_k = ext{LLR}_k(q^k, 
ho, heta) \stackrel{\mathsf{def}}{=} N_{\mathcal{S}} \sum_{
u \in V} q^k_
u \log \left(rac{
ho_
u}{ heta_
u}
ight).$$

 $\chi^2$  test: Does not require the knowledge of  $\rho$  for the attack

$$S_k = \chi_k^2(q^k, heta) = N_{\mathbf{s}} \sum_{\mathbf{v} \in V} rac{(q_{\mathbf{v}}^k - heta_{\mathbf{v}})^2}{ heta_{\mathbf{v}}}.$$

# **Complexities**

Let S(k) be the statistic obtained for a key candidate k.

$$S(k) = LLR_k(q^k, p, \theta) \text{ or } = \chi_k^2(q^k, \theta)$$

Then,

$$S(k) \sim egin{cases} \mathcal{N}(\mu_R, \sigma_R^2) & ext{if } k = K_r, \\ \mathcal{N}(\mu_W, \sigma_W^2) & ext{otherwise.} \end{cases}$$

### In the paper:

- ► Estimates of the value of  $\mu_R$ ,  $\mu_W$ ,  $\sigma_R$ ,  $\sigma_W$  for both LLR and  $\chi^2$  statistical tests.
- Estimates of the Data Complexity

# **Outline**

### Introduction

Block Ciphers
Differential Cryptanalysis
Last Round Attacks

# Multiple Differential Cryptanalysis

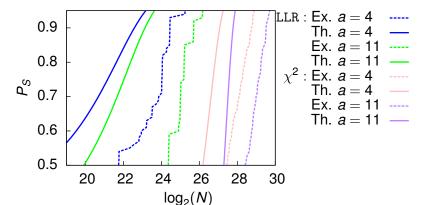
Definition Partitioning Function Complexities

# **Experiments**

Experimental Results Analyse

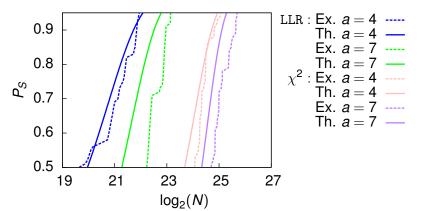
# Using unbalanced partitioning

### Subset of output differences



# **Using balanced partitioning**

Set of groups of output differences



# **Conclusions**

### Balanced or Unbalanced partitioning?

- ► Time Complexity: unbalanced ⇒ faster attack.
- Data Complexity: depends on the cipher.

# LLR or $\chi^2$ ?

- If we have a good estimate of the expected probabilities
  - $\Rightarrow$  LLR provides better Data and Memory complexities
- Otherwise LLR is not effective

# **Work in Progress**

### Estimation of the Differential Probabilities

# In Theory

 Estimation of truncated differential probabilities can be done correlations.

### In Practice

- Estimation of the correlations are "easy" on PRESENT CHO
- We use them to compute the distribution vector.
- We provide a multiple differential attack on PRESENT