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Institut de Recherche Mathématique de Rennes (IRMAR),
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Motivation — Reed–Solomon vs. Gabidulin Codes

For a code C of length n, dimension k and minimum distance d,
unique decoding is possible up to τ =

⌊
d−1
2

⌋
.

What about decoding algorithms for Gabidulin codes?
Similar to Reed–Solomon codes?
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Reed–Solomon vs. Gabidulin Codes — Algorithms

Decoding up to half the minimum distance τ =
⌊
d−1
2

⌋

Reed–Solomon Codes Gabidulin Codes

System of equations Peterson, . . . Gabidulin

Shift–Register Synthesis Berlekamp–Massey Paramonov–Tretjakov,
Richter–Plass

Euclidean Algorithm Sugiyama, . . . Gabidulin

Interpolation Welch–Berlekamp Loidreau
...

...
...

Many parallels between Reed–Solomon and Gabidulin codes!
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List Decoding

For a code C of length n, dimension k and minimum distance d,
there can be several codewords in a ball of radius τ >

⌊
d−1
2

⌋
.

What about decoding algorithms for Gabidulin codes?
Similar to Reed–Solomon codes?
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Reed–Solomon vs. Gabidulin Codes — Algorithms

Decoding beyond half the minimum distance τ >
⌊
d−1
2

⌋

Reed–Solomon Codes Gabidulin Codes

Interpolation Sudan
(List Decoding) Guruswami–Sudan

(and many accelerations) ?
Syndrome-based Schmidt–Sidorenko

(Unique Decoding)

Is polynomial–time list decoding possible for Gabidulin codes?
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Rank Metric

Rank Metric

Let B be a basis of Fqm over Fq where q is a power of a prime

Each vector x ∈ Fnqm can be mapped on a matrix X ∈ Fm×nq

Rank norm: rank(x)
def
= rank of X over Fq

Minimum Rank Distance of a block code C:

d
def
= min{rank(c1 − c2) | c1, c2 ∈ C, c1 6= c2} ≤ n− k + 1

Codes with d = n− k + 1 are called Maximum Rank Distance
(MRD) codes

Linearized Polynomial over Fqm

f(x)
def
=
∑df

i=0 fix
[i] =

∑df
i=0 fix

qi with fi ∈ Fqm .

If fdf 6= 0, define the q-degree: degq f(x) = df .
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Gabidulin Codes

Introduced by Delsarte (1978), Gabidulin (1985), Roth (1991)

A linear Gabidulin code G(n, k) of length n ≤ m and
dimension k over Fqm is defined by

G(n, k) def
=
{
c = (f(α0) f(α1) . . . f(αn−1))

∣∣degq f(x) < k
}
,

where all f(x) are linearized polynomials and
α0, . . . , αn−1 ∈ Fqm are linearly independent over Fq.

Minimum Rank Distance of a Gabidulin Code

d = min{rank(c) | c ∈ G, c 6= 0} = n− k + 1.
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Problem Statement

Is polynomial–time list decoding possible for rank metric codes
(and in particular for Gabidulin codes)?

Problem (Maximum List Size)

Let C(n,M, d) be a code over Fqm with n ≤ m and minimum rank
distance d. Let τ < d. Find a lower and upper bound on the
maximum number of codewords ` in a ball of rank radius τ .
Hence, find a bound on

`
def
= max

r∈Fnqm

(
|Bτ (r) ∩ C(n,M, d)|

)
.

Interpretation:

Lower exponential bound: no polynomial-time list decoding,

Upper polynomial bound: polynomial-time list decoding might
exist.
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Bounds on the Maximal List-Size

Reed–Solomon codes
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Bounds on the Maximal List-Size

Reed–Solomon codes Gabidulin codes

13



A Lower Bound on the List Size

Theorem (Lower Bound on the List Size)

Let the Gabidulin code G(n, k) over Fqm with n ≤ m and
d = n− k + 1 be given and let τ < d. Then, there exists a word
r ∈ Fnqm such that

` ≥ |Bτ (r) ∩ G(n, k)| ≥
[ n
n−τ ]

(qm)n−τ−k
≥ qmqτ(m+n)−τ2−md,

and for the special case of n = m: ` ≥ qnq2nτ−τ2−nd.

For n = m this is ` ≥ qn(1−ε) · q2nτ−τ2−nd+nε

Exponential in n if τ ≥ n−
√
n(n− d+ ε) and 0 ≤ ε < 1

( = Johnson radius).

Proof similar to the proof of Justesen-Hoholdt for RS codes.
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A Lower Bound on the List Size – Proof

Proof (i)

P∗ def
= set of all monic linearized polynomials of degq = n− τ

and a root space over Fqn of dimension n− τ > k − 1

|P∗| = [ n
n−τ ]

P def
= subset of P∗ such that all q-monomials of q-degree

greater than or equal to k have the same coefficients

There are (qm)n−τ−k possibilities to choose the highest
n− τ − (k − 1) coefficients

There exist coefficients such that |P| ≥ [ n
n−τ ]

(qm)n−τ−k

For any f(x), g(x) ∈ P, degq(f(x)− g(x)) < k, is evaluation
polynomial of a codeword of G(n, k)
. . .
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A Lower Bound on the List Size – Proof

Proof (ii)

Let f(x), g(x) ∈ P
Let A = {α0, α1, . . . , αn−1} be a basis of Fqn over Fq
Let r = (r0 r1 . . . rn−1) = (f(α0) f(α1) . . . f(αn−1))

Let c be the evaluation of f(x)− g(x) at A
Then, r− c is the evaluation of
f(x)− f(x) + g(x) = g(x) ∈ P, whose root space has
dimension n− τ and all roots are in Fqn
dimker(r− c) = n− τ and rk(r− c) = τ

Therefore, for any g(x) ∈ P, the evaluation of f(x)− g(x) is a
codeword from G(n, k) and has rank distance τ from r.

=⇒ ` ≥ |P| ≥ [ n
n−τ ]

(qm)n−τ−k .

16



Outline

1 Rank Metric Codes

2 Problem Statement

3 Bounds for Gabidulin Codes
Overview
Lower Bound

4 General Rank Metric Codes
Upper Bound
Lower Bound

5 Conclusion

17



An Upper Bound on the List Size

Theorem (Upper Bound on the List Size)

Let any rank metric code C(n,M, d) over Fqm with n ≤ m and
minimum rank distance d be given. Let τ < d. Then, for any word
r ∈ Fnqm and hence, for the maximum list size, the following holds

` = max
r∈Fnqm

(|Bτ (r) ∩ C(n,M, d)|) ≤
τ∑

t=
⌊
d−1
2

⌋
+1

[ n
2t+1−d ][

t
2t+1−d

]
≤ 4

τ∑
t=

⌊
d−1
2

⌋
+1

q(2t−d+1)(n−t).

Exponential in n ≤ m for any τ > b(d−1)/2c
Does not provide any conclusion if polynomial-time list
decoding is possible or not up to the Johnson bound.
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A Lower Bound on the List Size

Theorem (Lower Bound on the List-Size)

Let n ≤ m, τ ≥ b(d−1)/2c+ 1 and τ ≤ n− τ .
Then, there exists a rank metric code C(n,M, dR ≥ d) over Fqm of
length n and minimum rank distance dR ≥ d, and a word r ∈ Fnqm
such that ∣∣C(n,M, dR ≥ d) ∩ Bτ (r)

∣∣ ≥ q(n−τ)(τ−b(d−1)/2c).

Shows there exists a rank metric code and a received word
such that list size is exponential in n for τ > b(d−1)/2c.
⇒ No polynomial-time list decoding for these codes!

C(n,M, dR ≥ d) might be non-linear and non-MRD.

The restriction τ ≤ n− τ is always fulfilled for
τ = b(d−1)/2c+ 1 and k > 1.

Proof uses interpretation of {r− c1, r− c2, . . . , r− c`} as
constant-rank code of rank τ and minimum rank distance d.
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Conclusion

We have shown three bounds on the list size of rank metric codes:

The lower bound for Gabidulin codes

is based on the evaluation of linearized polynomials,

shows that polynomial-time list decoding is not possible for
τ ≥ n−

√
n(n− d+ ε).

The upper bound for any rank metric code

uses subspace properties,

is exponential in n.

The lower bound for rank metric codes

uses the interpretation as constant-rank code,

shows that there exists a rank metric code with
exponential list size for τ ≥ b(d−1)/2c+ 1.
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