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Non-Malleability – Cryptography

Non-malleability: cryptographic property introduced by Dolek et al. in
1991 [DDN91].

A cryptographic scheme is non-malleable if a decrypted tampered
ciphertext reveals no information about the original plaintext.

m c
Encsk

m̃ c̃
Decsk

f???
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Non-Malleability – Coding Theory

This principle was transposed to coding theory by Dziembowski et al. in
2010 [DPW10].
For a coding scheme to be non-malleable, a decoded tampered codeword
should

either be corrected
or reveal no information about the original message.

m cEnc

m̃ c̃
Dec

f???

This is known as the tampering experiment.

5 / 36



Tamper proofness and read proofness

Such constructions can be used to protect a system where computations
are performed in tamper and read proof circuit, but they depend on a
secret state which is stored in read proof only memory.
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G

In

Out

f

The first step of the computation is then to decipher or decode the
encrypted or encoded secret state.
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Algorithmic tamper proofness

Such algorithmic tamper proofness was first studied by Gennaro et al.
in 2004 [GLM+04]. Basically, their solution was to store the secret
state together with a signature, so that, if the secret state is tampered
with, the signature check fails and the system aborts.

〈G , s〉 → 〈GSign,Check,(sk,pk), (s, Sign(s, sk))〉

Much influenced by this work, Dziembowski et al. [DPW10] proposed
to use non-malleable codes to transform such a system.

〈G , s〉 → 〈GEnc,Dec,Enc(s)〉
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Tampering functions

A tampering function is a function

f : Fn
2 → Fn

2 .

Some families of particular interest:
1 Fall = Fn

2
Fn

2 the set of all tampering functions;
2 Fbit = (f1, . . . , fn) the set of bitwise independent tampering functions;
3 F lin the set of linear functions

Non-malleability with regard to a family is defined as non-malleability
against each function in that family.
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Formal definition I

A coding scheme is a couple (Enc,Dec) where
Enc : Fk

2 → Fn
2 is a randomized encoding procedure

Dec : Fn
2 → Fk

2 ∪ {⊥} is the associated deterministic decoding
procedure

The tampering experiment induces a probability distribution for every
message m and tampering function f denoted by Tamperf (m).

The idea of non-malleability is that an attacker should not gain more
information by tampering the codeword than by having just black box
access to the circuit.
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Formal definition II

Definition (Non-malleability)

A coding scheme (Enc,Dec) is said to be non-malleable with regard to a
family F of tampering functions iff, for every f ∈ F , there exists a
probability distribution Df over Fk

2 ∪ {⊥, same}, such that for every
message m, the two following distributions are indistinguishable:

Tamperf (m) ≈


m̃← Df

Output
{

m if m̃ = same
m̃ otherwise


In particular, the distribution Df does not depend on the message m.
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Relation to classical models

An error correcting code should be able to correct errors introduced by
tampering functions.
Error correction implies non-malleability: the associated distribution is
Df = same for every tampering function.
An error detecting code should either return the unmodified codeword,
or a special symbol ⊥.
Error detection implies non-malleability if the probability of error
detecting is independent of the source message.
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(Im)possibility results

Theorem (Impossibility)

There exists no code non-malleable with regard to the family Fall .

For example, for any coding scheme (Enc,Dec), there is a function f which
associates to a codeword c = Enc(m) the codeword c̃ = Enc(m + 1)

Theorem (Possibility)

For any family F such that log log#F < n, there exists a non-malleable
code.

The upper bound on the size of the family is to be compared with
log log#Fall = n + log n.
(The proof is not constructive)
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Linear codes

Error correction can typically be done by finding the closest codeword to
the received tampered codeword.
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For a linear code whose generating matrix is G and parity check is H, a
bitstring x is a codeword iff Htx = 0. Otherwise the value Htx = e is
called the syndrome of x .
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Linear coset coding

The idea of linear coset coding is to encode each message as a coset of a
linear code.

Decoding a codeword can then be done by computing its syndrome.
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Formal Definition

Definition (Linear Coset Coding)

Given: C a [n, n − k , d ] linear code with a k × n parity-check matrix H
Encode: m ∈ Fk

2 7→R c ∈ Fn
2 s.t. Hc = m

Decode: c ∈ Fn
2 7→ m = Hc
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The Wire-Tap Channel II

In 1984, Ozarow and Wyner introduced a second version of the Wire-Tap
Channel [OW84].

Alice wants to transmit a message to Bob without Eve getting any
information.
Both channels are noiseless
But Eve can only get a given number of bits on hers.

Alice Enc

erasures

Bob

Eve

m c

chosen bits of c
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Bitwise Independent Tampering, LCC and WTC

First, we consider non-malleability w.r.t. bit-wise independent
tampering functions, i.e. functions f : x 7→ f (x) = (f1(x1), . . . , fn(xn))
where fi ∈ {0, 1, keep,flip}.
Both NMC and WTC problems can be solved using linear coset coding.
In particular, for the second version of the Wire-Tap Channel, if we
denote by d⊥ the dual distance of the linear code used, and if Eve has
only access to less than d⊥ bits of information, then she gains
absolutely no information on the message.
Efficient implementations using LDPC codes.
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Which version for bitwise tampering?

Using a linear coset coding, we can not be protected against functions in
Ferr , i.e. with bit functions only keeping of flipping bits. Indeed if m is
the original message and an error e is added, then

c̃ = c + e ,

and the decoded message is nothing but

m̃ = Htc + Hte = m + Hte .

So we must include some bit functions setting bits to 0 or 1. This can be
naturally seen as the erasures of the second version of the Wire-Tap
Channel.
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NMC from the WTC

Result from [CCFP11]

Theorem (Non-Malleability of LCC wrt bit-wise independent
tampering functions)

Let F be a family of bitwise independent tampering functions such that
∀f = (f1, . . . , fn) ∈ F ,# {i | fi = 0 or fi = 1} ≥ D.
Let C be a [n, n − k] MDS linear code such that k < D.
Then a linear coset coding using C is non-malleable w.r.t. F .
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From bit-wise to linear tampering

Linear functions f : x 7→ A.x + B with A ∈ Fn×n
2 ,B ∈ Fn

2

Bit-wise independent functions can easily be described by linear
functions, with a diagonal matrix A:

f = (keep,flip,0,1). ∀x ∈ F4
2, f (x) = A.x + B with

A =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,B =


0
1
0
1


Starting from this observation, can we adapt the theorem of last slide to a
result of non-malleability w.r.t. linear functions ? How is adapted the
condition on the number of 0,1 ? On a condition on the rank of A ?
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Secure Network Coding (SNC)

Introduced by Cai and Yeung [CY02], see also [CC11].
Network represented as a directed acyclic graph
Single source node sends a message m through the network
User nodes are at the end of the paths in the graph
Message is encoded before being sent through the network
Inner nodes transmit linear combinations of the packets that they
receive

m

U1

s

U2

x1

x2

x1

x1

x2
x2

x1

x1 + 2x2 x1+
2x2

x1 + 2x2

Figure: A Secure Butterfly Network over F3 (x1 ∈R F3, x2 = m − x1)
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Security of SNC

Security Requirements:
The user nodes can recover the original message m from the packets
that they received
For any subset of edges that we allow the adversary to obtain, the
adversary gets no information on m.

Usually, adversary is allowed to access any subset (but only one at a time)
of up to µ edges.

m

U1

s

U2

x1

x2

x1

x1

x2
x2

x1

x1 + 2x2 x1+
2x2

x1 + 2x2

In this example, we satisfy the security requirements (with µ=1):
User nodes can recover the message. For instance U2 subtracts the
packets he received to obtain his output.
If an adversary accesses µ = 1 edge, he learns no information on m
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SNC Using Linear Coset Coding I

The source node wants to send a k-symbol message to the user nodes

It uses Linear Coset Coding with a k × n parity-check matrix H

n symbols are sent over the network

The intermediate nodes send a pre-determined linear combination of
the elements they receive

m

U1

s

U2

x1

x2

x1

x1

x2
x2

x1

x1 + 2x2 x1+
2x2

x1 + 2x2

Here, k = 1, n = 2 and H =
(
1 1

)
26 / 36



SNC Using Linear Coset Coding II

Security Result from [ERS07]:

Theorem (Security of SNC using LCC)

A SNC based on LCC based on a MDS code with a k × n parity-check
matrix H, such that no linear combination of µ ≤ n − k packets sent over
edges belongs to the space spanned by the rows of H, is secure against an
adversary who can observe µ edges.

m

U1

s

U2

x1

x2

x1

x1

x2
x2

x1

x1 + 2x2 x1+
2x2

x1 + 2x2

Here, the linear combinations are
(
0 1

)
,
(
1 0

)
and

(
1 2

)
. None of

them belongs to the span of H =
(
1 1

)
.
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Back to NMC

Transposition: the linear combinations performed by the intermediate
nodes in the SNC models are viewed as linear tampering functions
performed by the adversary in the NMC model
Furthermore, the decoding procedure needs to be taken into account,
since the adversary does not observe the result of his tampering
Roughly, the adversary observes HAx + HB and the considerations on
the rank of the linear combinations in the SNC model are transposed
to conditions on the rank of HA
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NMC from SNC

Main result from [CCP12]

Theorem (Non-Malleability of LCC wrt linear tampering functions)

Let C be a [n, n− k] MDS linear code, with a k × n parity-check matrix H.
Let F lin ⊂ Fn

2
Fn

2 be a family of linear tampering functions such that
∀f : x 7→ A.x + B ∈ F lin,

1 rank(HA) ≤ n − k
2 span(rows of HA) ∩ span(rows of H) = {0}

Then a LCC using C is non-malleable w.r.t. F lin.
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Remarks

Bit-wise independent tampering functions satisfying the first theorem
(NMC+bit-wise) satisfy this theorem (NMC+linear)
For the same LCC, the class of linear functions considered in the
theorem of [ERS07] (SNC+linear) is included in the class of functions
considered in this theorem (NMC+linear). (Indeed, the adversary in
the SNC model can in particular apply the decoding algorithm)
The reciprocal property is not true. For instance LCC are
non-malleable wrt to f : x 7→ x + c where c is a codeword, since the
tampered codewords are always corrected during the decoding
procedure. This function does not satisfy this theorem.
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Conclusion

Parallels between Non-Malleable Codes and known models in coding
theory
NMC wrt bitwise/linear tampering functions built with standard tools
Perspectives: non-linear tampering, other codes . . .
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That’s all, folks !

Thank you for your attention.
Questions ?
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A few words about my PhD

Title: “Secure Distributed Biometric Matching”
Goal: design privacy-preserving biometric identification/matching
protocols
Tools: Secure Multi-Computation (Garbled circuits, oblivious
transfer. . . ), Homomorphic Encryption
Applied to: Euclidean distance, Hamming distance, scalar product,
comparison. . .

34 / 36



References I

Ning Cai and T. Chan.
Theory of secure network coding.
Proceedings of the IEEE, 99(3):421 –437, march 2011.

H. Chabanne, G. Cohen, J. Flori, and A. Patey.
Non-malleable codes from the wire-tap channel.
In Information Theory Workshop (ITW), 2011 IEEE, pages 55 –59,
oct. 2011.

Hervé Chabanne, Gérard D. Cohen, and Alain Patey.
Secure network coding and non-malleable codes: Protection against
linear tampering.
In ISIT, pages 2546–2550. IEEE, 2012.

35 / 36



References II

Ning Cai and R.W. Yeung.
Secure network coding.
In Information Theory, 2002. Proceedings. 2002 IEEE International
Symposium on, page 323, 2002.

Danny Dolev, Cynthia Dwork, and Moni Naor.
Non-malleable cryptography (extended abstract).
In STOC, pages 542–552. ACM, 1991.

Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs.
Non-malleable codes.
In Andrew Chi-Chih Yao, editor, ICS, pages 434–452. Tsinghua
University Press, 2010.

36 / 36



References III

Salim Y. El Rouayheb and Emina Soljanin.
On wiretap networks ii.
In Information Theory, 2007. ISIT 2007. IEEE International Symposium
on, pages 551 –555, june 2007.

Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal
Rabin.
Algorithmic tamper-proof (ATP) security: Theoretical foundations for
security against hardware tampering.
In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 258–277. Springer, 2004.

Lawrence H. Ozarow and Aaron D. Wyner.
Wire-tap channel II.
In EUROCRYPT, pages 33–50, 1984.

37 / 36


	General framework
	Definitions
	Non-Malleable Codes from the Wire-Tap Channel
	Secure Network Coding
	Non-Malleable Codes w.r.t. Linear Tampering Functions

